Math, asked by niranjansingh2395, 4 months ago

please help me by doing the above question ​

Attachments:

Answers

Answered by Anonymous
3

Question:-

Simplify the following using identities.

a) (109)² + (91)²

b) (200)² - (100)²

c) (1025)² - (975)²

d) (10)² + (20)²

Solutions:-

a) (109)² + (91)²

\sf{\longrightarrow} Let us break the expressions such that they come in the form (a+b)² and (a-b)²

So,

(109)² = (100 + 9)²

(91)² = (100-9)²

Therefore,

[(100+9)² + (100-9)²]

Applying,

(a+b)² = a² + b² + 2ab

(a+b)² = a² + b² + 2ab(a-b)² = a² + b² - 2ab

Here a = 100 and b = 9

= \sf{[(100)^2 + (9)^2 + 2\times100\times9] + [(100)^2 + (9)^2 - 2\times100\times9]}

= \sf{[10000 + 81 + 1800] + [10000 + 81 - 1800]}

= \sf{10000 + 81 + \cancel{1800} + 10000 + 81 - \cancel{1800}}

= \sf{10081 + 10081}

= \sf{10162}

______________________________________

b) (200)² - (100)²

\sf{\longrightarrow} Applying, a² - b² = (a+b)(a-b)

Here a = 200 and b = 100

\sf{(200+100)(200-100)}

= \sf{300\times100}

= \sf{30000}

______________________________________

c) (1025)² - (975)²

\sf{\longrightarrow}Applying, a² - b² = (a+b)(a-b)

Here a = 1025 and b = 975

\sf{(1025+975)(1025-975)}

= \sf{2000\times50}

= \sf{100000}

______________________________________

d) (10)² + (20)²

\sf{\longrightarrow} Let us break the expressions such that they come in the form of (a+b)² and (a-b)²

So,

(10)² = (10+0)²

(20)² = (10+10)²

Therefore,

Applying,

(a+b)² = a² + b² + 2ab

Here,

For (10)² a = 10 and b = 0

And For (20)² a = 10 and b = 10

= \sf{[(10)² + (0)² + 2\times0\times10] + [(10)² + (10)² + 2\times10\times10]}

= \sf{(100 + 0 + 0) + (100 + 100 + 200)}

= \sf{100 + 400}

= \sf{500}

_____________________________________

Additional Information:-

  • \sf{(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)}

  • \sf{(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3}

  • \sf{(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3}

______________________________________

Similar questions