Math, asked by OyeeKanak, 8 months ago

please help me
CLASS 9
CHAPTER 13
EXERCISE 13.3
QUESTION 5
please don't give irrelevant answers ​

Attachments:

Answers

Answered by Anonymous
127

\sf\large{\underline{\underline{\bold{\star Solution:-}}}}

\sf\large{Tarpulin\:will\:be\:on\:the\:Curved\:Surface}\sf\large{area\:of\:tent.}

\sf\large{Lets\:find\:curved\:surface\:area\:first}

\sf\large{Curved\:Surface\:area\:of\:Tent= pie\: r l}

\sf\large{\underline{\underline{Given:-}}}

\sf\large{\implies Radius\:(r) = 6\:Cm}

\sf\large{\implies Height\:(h) = 8\:m}

\sf\large{Let\:slant\:height\:be = l}

\sf\large{\underline{\underline{We\:know\:that,}}}

\sf\large{\implies {l}^{2} = {h}^{2} + {r}^{2}}

\sf\large{Putting\:the\:values:}

\sf\large{\implies {l}^{2} = {(8)}^{2} + {(6)}^{2}}

\sf\large{\implies {l}^{2} = 64 + 36}

\sf\large{\implies {l}^{2} = 100}

\sf\large{\implies l = \sqrt{100}}

\sf\large{\implies l = \sqrt{({10}^{2})}}

\sf\large{\implies l = 10m}

\sf\large{Length=10m}

\sf\large{\star Curved\:Surface\:Area\:of\:tent = pie\: rl}

\sf\large{ \: \: \: \: \: \: \: \: \: = (3.14 × 6 × 10)\: {m}^{2}}

\sf\large{ \: \: \: \: \: \: \: \: \: = 188.4\: {m}^{2}}

\sf\large{Now,}

\sf\large{Area\:of\:tarpulin\:material = Area\:of\:Tent}

\sf\large{\implies (Length) × (Breadth) = Area \:of \:Tent}

\sf\large{\implies (Length) × 3 = Area\:of\:Tent}

\sf\large{\implies Length = \dfrac{1}{3}(Area\:of\:Tent)}

\sf\large{\implies Length = \dfrac{188.4}{3}}

\sf\large{\implies Length = 62.8\:m}

\sf\large{Now,}

\sf\large{Given\:that\:margin\:is\:20\:cm}

\sf\large{\implies Total\:Length = Length\:Calculated + Margin}

\sf\large{\implies Total\:Length = 62.8\:m + 20\:cm}

\sf\large{\implies Total\:Length = 62.8 + 20 × \dfrac{1}{100}\:m}

\sf\large{\implies Total\:Length = 62.8\:m + 0.2\:m}

\sf\large{\implies Total\:Length = 63\:m}

\sf\large{\underline{\underline{Therefore,}}}

\sf\large{\therefore{ Length \:of \:Tarpulin \:Required= 63\:m}}

Answered by Anonymous
56

QUESTION :-

What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm.

ANSWER :-

63 m

STEP BY STEP

EXPLANATION :-

➠ LET

• Height of the conical tent → h

• Radius of the conical tent → r

so ,

  • h = 8
  • r = 6

Slant height of the tent

 → (l)  =   \sqrt{ {r}^{2} +  {h}^{2}  }

  → \sqrt{ {(6)}^{2}  +  {(8)}^{2}  }

→  \sqrt{36 + 64}

→  \sqrt{100}

→ 10 m

Area of tarpaulin = Curved surface area of tent →

→ πrl

→ 3.14 x 6 x 10

→ 188.4 m²

Width of tarpaulin = 3 m

Let

  • Length of tarpaulin → L

★ Area of tarpaulin = Length × Breadth

→ L x 3 = 3L

Now According to question,

3L = 188.4

L = 188.4/3 = 62.8 m

The extra length

→20 cm

→ 0.2 m

So the total length of tarpaulin bought is

→ (62.8 + 0.2) m

→ 63 m

Similar questions