Math, asked by pajoce4631, 9 months ago

Please help me fast I need your help

Attachments:

Answers

Answered by BrainlyPopularman
6

GIVEN :

• If tan x + cot x = 2 then the value of tan²x + cot²x is :

(a) 3

(b) 1

(c) 2

(d) 0

ANSWER :

GIVEN :

• tan x + cot x = 2

TO FIND :

• tan² x + cot² x = ?

SOLUTION :

  \bf \implies \tan(x)  +  \cot(x)  = 2

• Square on both side –

  \bf \implies \{ \tan(x)  +  \cot(x)  \}^{2}  =  {(2)}^{2}

• Using identity –

  \bf \implies \large { \boxed{ \bf {(a + b)}^{2}  =  {a}^{2}   +  {b}^{2} + 2ab}}

• So that –

  \bf \implies \tan^{2} (x)+ \cot^{2} (x) + 2 \tan(x) . \cot(x)  = 4

  \bf \implies \tan^{2} (x)+ \cot^{2} (x) + 2 \tan(x) . \left \{  \dfrac{1}{ \tan(x) } \right \}  = 4

  \bf \implies \tan^{2} (x)+ \cot^{2} (x) + 2= 4

  \bf \implies \tan^{2} (x)+ \cot^{2} (x) = 4 - 2

  \bf \implies \tan^{2} (x)+ \cot^{2} (x) = 2

  \bf \implies \large{ \boxed{ \bf \tan^{2} (x)+ \cot^{2} (x) = 2 }}

Hence , Option (c) is correct.

Answered by Anonymous
2

Given ,

Tan(x) + Cot(x) = 2

Squaring on both sides , we get

 \sf \mapsto { \{Tan(x) + Cot(x) \}}^{2}   =  {(2)}^{2}  \\  \\  \sf \mapsto {Tan}^{2} (x) +  {Cot}^{2} (x) + 2Tan(x) \times  Cot(x) = 4 \\  \\  \sf \mapsto  {Tan}^{2} (x) +  {Cot}^{2} (x) +2Tan(x) \times  \frac{1}{Tan(x)} = 4  \\  \\  \sf \mapsto {Tan}^{2} (x) +  {Cot}^{2} (x) + 2 = 4 \\  \\ \sf \mapsto  {Tan}^{2} (x) +  {Cot}^{2} (x) = 2

Therefore ,

The correct option is (iii) i.e 2

Remmember :

 \sf  {(a + b)}^{2}  =  {(a)}^{2}  +  {(b)}^{2}  + 2ab \\  \\  \sf Cot(x) =  \frac{1}{Tan(x) }

Similar questions