Math, asked by snehashinde, 1 year ago

please help me friends

Attachments:

Answers

Answered by Grimmjow
18

Given : The Ink Container is Cylindrical in shape

Given : The Height of the Ink Container is 14 cm

Given : The Radius of the Ink Container is 6 cm

Let us find the Volume of the Ink Container :

★  Volume of a Cylinder is given by : π × (Radius)² × (Height)

\mathsf{\implies Volume\;of\;the\;Ink\;Container = \pi \times (6)^2 \times 14}

\mathsf{\implies Volume\;of\;the\;Ink\;Container = \dfrac{22}{7} \times 36 \times 14}

\mathsf{\implies Volume\;of\;the\;Ink\;Container = 22 \times 36 \times 2}

\mathsf{\implies Volume\;of\;the\;Ink\;Container = 1584\;cm^3}

\textsf{Given : The Ink Container is filled with Ink upto 91\%}

\implies \textsf{Volume of Ink in the Container = 91\% \times$ Volume of the Container}

\implies \mathsf{Volume\;of\;Ink\;in\;the\;Container = \dfrac{91}{100} \times 1584}

\implies \mathsf{Volume\;of\;Ink\;in\;the\;Container = 0.91 \times 1584}

\implies \mathsf{Volume\;of\;Ink\;in\;the\;Container = 1441.44\;cm^3}

We know that : Ballpen refill is Cylindrical in shape

Given : The Length of the Ballpen refill is 12 cm

Given : The Inner Diameter of the Ballpen refill is 2 mm

●  As Radius is Half of the Diameter :

\implies  The Radius of the Ballpen refill is 1 mm

★  We know that : 1 mm = 0.1 cm

\implies  The Radius of the Ballpen refill is 0.1 cm

Let us find the Volume of One Ballpen refill :

\mathsf{\implies Volume\;of\;the\;Ballpen\;refill = \pi \times (0.1)^2 \times 12}

\mathsf{\implies Volume\;of\;the\;Ballpen\;refill = 3.14 \times 0.01 \times 12}

\mathsf{\implies Volume\;of\;the\;Ballpen\;refill = 0.377\;cm^3}

\textsf{Given : The Ballpen refill is filled with Ink upto 84\%}

\implies \textsf{Volume of Ink in the Refill = 84\% \times$ Volume of the Refill}

\implies \mathsf{Volume\;of\;Ink\;in\;the\;Ballpen\;refill = \dfrac{84}{100} \times 0.377}

\implies \mathsf{Volume\;of\;Ink\;in\;the\;Ballpen\;refill = 0.84 \times 0.377}

\implies \mathsf{Volume\;of\;Ink\;in\;the\;Ballpen\;refill = 0.317\;cm^3}

In order to solve the Problem : We need to realize that Volume of the Ink in the Container before filling in the Ballpen refills should be equal to Volume of Ink in the Total Number of refills which are filled. Because : Total Volume of the Ink remains Constant.

Let the Number of Ballpen refills filled with Ink be : R

\implies \textsf{R \times$ Volume of Ink in each refill = Total Volume of Ink in the Container}

\mathsf{\implies R \times 0.317 = 1441.44}

\mathsf{\implies R = \dfrac{1441.44}{0.317}}

\mathsf{\implies R = 4547.13}

\implies \textsf{Number of refills that can be filled with Ink is : 4547 (approx)}


Avengers00: nice explanation
Grimmjow: Thank you! ^-^
Anonymous: Gr8 : )
Grimmjow: Thank you for your Kind words! Ritesh & Aditya ^_^
pratyush4211: amazing
Grimmjow: :ab_hum_itne_khaas_bhi_nahi: Thank you! Pratyush ^^''
Anonymous: superb !
Grimmjow: Thank you! ^_^
Similar questions