Math, asked by shiftfaiz786, 10 months ago

please help me friends prove that question as fast as possible it's urgent requirement....​

Attachments:

Answers

Answered by 007Boy
10

Question :-

 \frac{1 -  \sin(60 {}^{0} ) }{ \cos(60 {}^{0} ) }  =  \frac{ \tan(60 {}^{0}  ) - 1 }{ \tan(60 {}^{0} )  + 1}

Solution :-

 \frac{1 -  \sin(60 {}^{0} ) }{ \cos(60 {}^{0} ) }  =  \frac{ \tan(60 {}^{0} )  - 1}{ \tan(60 {}^{0} )  + 1}  \\  \\ put \: the \: all \: triangular \: values \\  \\  \\  \frac{1 -  \frac{ \sqrt{3} }{2} }{ \frac{1}{2} }  =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \\  \\

Now solve this

 \frac{ \frac{2 -  \sqrt{3} }{2} }{ \frac{1}{2} }  =  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \\  \\  \\ 2 -  \sqrt{3}  =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }

Now rationalize Rhs.

 2 -  \sqrt{3}  =  \frac{( \sqrt{3}  - 1) {}^{2} }{3 - 1}  \\  \\ 2 -  \sqrt{3}  =  \frac{3 + 1 - 2 \sqrt{3} }{2}  \\  \\ 2 -  \sqrt{3}  =  \frac{4 - 2 \sqrt{3} }{2}  \\  \\ 2 -  \sqrt{3}  = 2 -  \sqrt{3}

Hence,

Rhs = Lhs (Proved)

Answered by InfiniteSoul
1

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

Show that :-

\sf\dfrac{1 - sin 60}{cos 60} = \dfrac{tan60-1}{tan 60 + 1}

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\implies\sf\dfrac{1 - sin 60}{cos 60} = \dfrac{tan60-1}{tan 60 + 1}

{\bold{\blue{\boxed{\bf{LHS}}}}}

  •  sin 60 = \dfrac{\sqrt{3}}{2}

  •  cos 60 = \dfrac{1}{2}

\implies\sf\dfrac{1-\dfrac{\sqrt 3 }{2}}{\dfrac{1}{2}}

\implies\sf\dfrac{\dfrac{1-\sqrt 3}{2}}{\dfrac{1}{2}}

\implies\sf\dfrac{1 - \sqrt 3}{\cancel 2}\times\dfrac{\cancel 2}{1}

{\bold{\blue{\boxed{\bf{RHS}}}}}

  •  tan 60 = \sqrt 3

\sf\implies\dfrac {\sqrt 3 - 1}{\sqrt 3 + 1}

  • rationalize the denominator

\sf\implies\dfrac {\sqrt 3 - 1}{\sqrt 3 + 1}\times{\sqrt 3 - 1}{\sqrt 3 - 1}

  •  (a-b)^2 = a^2 + b^2 - 2ab
  •  a^2 - b^2 = (a+b)(a-b)

\implies\sf\dfrac{\sqrt 3^2 + 1^2 + 2\times\sqrt 3 \times 1 }{\sqrt 3 ^2 - 1^2}

\implies\sf\dfrac{3 + 1 + 2\sqrt 3 }{ 3  - 1 }

\implies\sf\dfrac{4+ 2\sqrt 3 }{ 2 }

\implies\sf\dfrac{\cancel2(1+ \sqrt 3)}{ \cancel 2 }

\implies\sf 1 + \sqrt 3

{\bold{\blue{\boxed{\bf{Compare}}}}}

\implies\sf 1 + \sqrt 3 = \implies\sf 1 + \sqrt 3

LHS = RHS

......Hence proved

______________________❤

THANK YOU ❤

Similar questions