Physics, asked by Miruthulaa22, 1 year ago

please help me guys. .​

Attachments:

Answers

Answered by amankumaraman11
1

Let \: \:  the \:  \: distance \:  \: be \:  \: d.

Then,

{ \boxed{ \blue{ \boxed{(t_{1}  )\: i.e \:  \: time \:  \: taken \: while \: going}}}} \\ { \boxed{ \blue{ \boxed{to \: school \: = >   \frac{d}{20}}}}}  \\  \\ \\  \\ { \boxed{ \purple{ \boxed{ (t_{2})  \:  i.e \:  \: time \: taken \: while \:coming}}}} \\{ \boxed{ \purple{ \boxed{ from \: school=  \frac{d}{30} }}}}

Therefore,

{ \large{Total \:  \:  time   \: \:  taken\:  \: in \:  \: trip }} \\ \\  = >   \frac{d}{20}  +  \frac{d}{30}  \\  \\  =  >  \frac{3d + 2d}{60}  =  \frac{5d}{60}  =  \frac{d}{12}

Now,

V_{av}  \: for \:  \: whole \:  \: journey =  >  \frac{total \: distace}{total \: time \: taken}  \\  \\ =  >  \frac{d + d}{ \frac{d}{12}}=   \frac{2d}{ \frac{d}{12} }  \\  \\  =  >  \frac{2d \times 12}{d}  ={ \red{ 24  \: {kmh}^{ - 1} }}

Similar questions