Math, asked by ved9426, 1 year ago

please help me here​

Attachments:

Answers

Answered by Anonymous
1

HEYA \:  \\  \\  \sqrt{2 +  \sqrt{3} }   \:  \:  \:  +  \:  \:  \:  \sqrt{2 -  \sqrt{3} }  = z \:  \: let \:  \\  \\ squaring \: on \: both \: sides \: we \: have \\  \\ 2 +  \sqrt{3}  + 2 -  \sqrt{3}  + 2 \sqrt{(2 +  \sqrt{3}  \times (2 -  \sqrt{3}) }  = z {}^{2}  \\  \\ 4 + 2 \sqrt{(2 +  \sqrt{3}) \times (2 -  \sqrt{3} ) }  = z {}^{2}  \\  \\ 4 + 2 \sqrt{(2 {}^{2} - ( \sqrt{3}) {}^{2}   }  = z {}^{2}  \\ becoz \:  \: (a + b) \times (a - b) = a {}^{2}  - b {}^{2}  \\  \\ 4 + 2 \sqrt{(1)}  = z {}^{2}  \\  \\ z {}^{2}  = 6 \\  \\ z =  \sqrt{6}  \\  \\ so \:  \:  \sqrt{2 +  \sqrt{3} }  +  \sqrt{2 -  \sqrt{3} }  =  \sqrt{6}

Answered by Anonymous
1

Step-by-step explanation:

 \begin{lgathered}\sqrt{2 + \sqrt{3} } \: \: \: + \: \: \: \sqrt{2 - \sqrt{3} } = z \: \: let \: \\ \\ Squaring \: On \: Both \: Sides \: We \: Have \\ \\ 2 + \sqrt{3} + 2 - \sqrt{3} + 2 \sqrt{(2 + \sqrt{3} \times (2 - \sqrt{3}) } = z {}^{2} \\ \\ 4 + 2 \sqrt{(2 + \sqrt{3}) \times (2 - \sqrt{3} ) } = z {}^{2} \\ \\ 4 + 2 \sqrt{(2 {}^{2} - ( \sqrt{3}) {}^{2} } = z {}^{2} \\ \\ Because \\ \: \: (a + b) \times (a - b) = a {}^{2} - b {}^{2} \\ \\ 4 + 2 \sqrt{(1)} = z {}^{2} \\ \\ z {}^{2} = 6 \\ \\ z = \sqrt{6} \\ \\ so \: \: \sqrt{2 + \sqrt{3} } + \sqrt{2 - \sqrt{3} } = \sqrt{6}\end{lgathered}

Similar questions