Please help me i need it now please sorry to disturb please help
DEMAND FUNCTIOn: Qd = 120 - 4P
solusyun
1.) Qd = 120 - 4P
Qd = 120 - 4(30)
Qd = 120 - 120
Qd = 0
answer: Qd = 0
2.) P = a - Qd/b
P = 120 - 24/4
P = 96/4
P = 24
answert: P = 24
3.) P = a - Qd/b
P = 120 - 40/4
P = 80/4
P = 20
answer: P = 20
4.) Qd = 120 - 4P
Qd = 120 - 4(18)
Qd = 120 - 72
Qd = 48
answer: Qd = 48
5.) P = a - Qd/b
P = 120 - 72/4
P = 48/4
P = 12
answert: P = 12
6.) Qd = 120 - 4P
Qd = 120 - 4(8)
Qd = 120 - 32
Qd = 88
answer : Qd = 88
Answers
Answer:
《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》
▪Given :-
\begin{gathered} A = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}A=[cosθ−sinθsinθcosθ]
And
B=A+A^4B=A+A4
___________________________
▪To Calculate :-
det(B)
___________________________
▪Solution :-
\begin{gathered} A = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}A=[cosθ−sinθsinθcosθ]
So,
\begin{gathered} \sf A {}^{2} = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ = \small \begin{bmatrix} \sf cos {}^{2} \theta - {sin}^{2} \theta& \sf sin \theta cos \theta + sin \theta cos \theta \\ \sf - sin \theta cos \theta - sin \theta cos \theta& \sf - {sin}^{2} \theta + cos {}^{2} \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos 2\theta& \sf sin 2\theta \\ \sf - sin2 \theta& \sf cos2 \theta \end{bmatrix} \end{gathered}A2=[cosθ−sinθsinθcosθ]=[cosθ−sinθsinθcosθ][cosθ−sinθsinθcosθ][cosθ−sinθsinθcosθ]=[cos2θ−sin2θ−sinθcosθ−sinθcosθsinθcosθ+sinθcosθ−sin2θ+cos2θ]=[cos2θ−sin2θsin2θcos2θ]
Similarly,
\begin{gathered}A {}^{4} = \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\ \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix}\end{gathered}A4=[cos4θ−sin4θsin4θcos4θ]
As,
Given Matrix
B = A + A {}^{4}B=A+A4
So,
\begin{gathered} \sf B= \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}+ \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\ \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos \theta + cos 4\theta& \sf sin \theta + sin 4\theta \\ \sf -( sin \theta + sin 4\theta)& \sf cos \theta + cos4 \theta \end{bmatrix} \end{gathered}B=[cosθ−sinθsinθcosθ]+[cos4θ−sin4θsin4θcos4θ]=[cosθ+cos4θ−(sinθ+sin4θ)sinθ+sin4θcosθ+cos4θ]
\begin{gathered} \bf \small\therefore det(B) = {(cos \theta + cos4 \theta)}^{2} + {(sin \theta + sin4 \theta)}^{2} \\ \\ = \sf {cos}^{2} \theta + {cos}^{2} 4\theta + 2 cos\theta cos4 \theta \\ + {sin}^{2} \theta \sf+ {sin}^{2} 4\theta + 2 sin\theta sin4 \theta \\ \\ = \sf 2 + 2cos(3 \theta)\end{gathered}∴det(B)=(cosθ+cos4θ)2+(sinθ+sin4θ)2=cos2θ+cos24θ+2cosθcos4θ+sin2θ+sin24θ+2sinθsin4θ=2+2cos(3θ)
\begin{gathered} \sf So, at \: \theta = \frac{\pi}{5} \\ \\ \sf det(B) = 2 + 2cos \frac{3\pi}{5} \\ \\ = \sf4 {cos}^{2} ( \frac{3\pi}{10} ) \\ \\ = \sf4(\frac{ \sqrt{10 - 2 \sqrt{5} } }{4} \: {)}^{2} \\ \\\large \colorbox{lime}{ \underline{\boxed{ \color{magenta}\bf det(B)= \frac{1}{4} (10 - 2 \sqrt{5} \: )}}}\end{gathered}So,atθ=5πdet(B)=2+2cos53π=4cos2(103π)=4(410−25)2 det(B)=4