please help me.i will make you brainlist
Attachments:
Answers
Answered by
0
Answer:
(x+tany)dy=sin2ydx
⇒
dy
dx
=
sin2y
x+tany
⇒
dy
dx
=
sin2y
x
+
sin2y
tany
⇒
dy
dx
−cosec2y.x=
2
1
sec
2
y(∵sinx=
cosecx
1
;tanx=
cosx
sinx
;sin2x=2sinxcosx)
sincethisisintheformof
dy
dx
+Rx=S
where,R=−cosec2yandS=
2
1
sec
2
y
∴I.F=e
∫Rdy
=e
∫(−cosec2y)dy
=e
−log∣cosec2y−cot2y∣
=e
−log(tany)
=e
log(coty)
=coty
sothesolutionofthegivendifferentialequationisgivenby
x.(I.F)=∫S.(I.F)dy+C
⇒x.(coty)=∫
2
1
sec
2
y.(coty)dy+C
⇒x.(coty)=∫
sin2y
1
dy+C
⇒x.(coty)=∫cosec2ydy+C
⇒x.(coty)=
2
1
log∣cos2y−cot2y∣+C
Similar questions