Math, asked by arvindkumarrayji1995, 19 days ago

please help me

if a+b=5, a-b=1 , find the value of 8ab (A2+b2​

Attachments:

Answers

Answered by BrainlyZendhya
2

Given,

  • \sf{a\:+\:b\:=\:5}---(1)
  • \sf{a\:-\:b\:=\:1}---(2)

Solving (1), we get,

\implies\sf{a\:+\:b\:=\:5}

\implies\sf{a\:=\:5\:-\:b}---(3)

Substituting (3) in (2), we get,

\implies\sf{a\:-\:b\:=\:1}

\implies\sf{5\:-\:b\:-\:b\:=\:1}

\implies\sf{-\:b\:-\:b\:=\:1\:-\:5}

\implies\sf{-2b\:=\:-4}

\implies\sf{b\:=\:{\dfrac{-4}{-2}}}

\implies\sf{b\:=\:2}

Substituting 'b' in (1),

\implies\sf{a\:+\:b\:=\:5}

\implies\sf{a\:+\:2\:=\:5}

\implies\sf{a\:=\:5\:-\:2}

\implies\sf{a\:=\:3}

Substituting values in the equation, we get,

\implies\sf{8\:ab\:(a^2\:+\:b^2)}

\implies\sf{8\:(3\:\times\:2)\:(3^2\:+\:2^2)}

\implies\sf{8\:(6)\:(9\:+\:4)}

\implies\sf{8(6)\:(9\:+\:4)}

\implies\sf{48\:\times\:11}

\implies\sf{528}

Hence, the value of 8 ab(a² + b²) = 528.

Similar questions