Math, asked by cpkumar27, 8 months ago

please help me in matching​

Attachments:

Answers

Answered by aryan073
1

Answer::

(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(•ω•)(⌒o⌒)(•ω•)(⌒o⌒)(•ω•)(⌒o⌒)(•ω•)(⌒o⌒)(•ω•)(•ω•)(⌒o⌒)(⌒o⌒)(•ω•)

\large\blue{\rm\:Answer}

TRIGONOMETRY:

\bf\blue{Matrix\: matching:}}</p><p></p><h2>coloumn-(I) </h2><p>[tex]\bf\red{(3) If\: sin\theta=cos\theta \: ,then \: theta=?}

\sf\pink{As \: know \: that \:}

\sf\pink{sin\theta=sin(\dfrac{pi}{2}-\theta)=cos\theta }

\sf{sin\theta=cos\theta [Answer]=90degree }

\bf\brown{option\: (d) \:90 degree\: is\: correct }

\bf\red{(4)\: cos(A+B)=\dfrac{1}{2}\: and \: sin(A-B) =\dfrac{1}{2}}

\implies\sf{As \: we\: know\:that cos(\dfrac{1}{2}=60degree\:  and  \: sin(\dfrac{1}{2}=30degree}

\sf{A+B=60 \: and \:A-B=30degree}

\sf{A+B=60}......(1)

\sf{A-B=30}.......(2)

\bf{2A=90}

\bf{A=45}

now put the A value in eqn (1)

\bf{45+B=60}

\bf{B=15degree}

\bf\green{option\:(a) \: is\: corrrect}

\bf\red{(5)tan\theta=90 degree =not defined }

\bf\green{option(d) \: is\: correct}

\bf\red{(6) tan^2\theta=\dfrac{1+cos60}{1-cos60}

\implies\sf{tan^2\theta=\dfrac{1+\dfrac{1}{2}{1-\dfrac{1/2}}

\implies\sf{tan^2\theta=1}

\implies\sf{\theta=45degree}

Similar questions