Math, asked by bhardwajshrey12345, 1 year ago

Please help me in question 13,14,16

Attachments:

Answers

Answered by amankumaraman11
1

{ \Huge{ \textbf{13)}}}

{ \large{Area  \:  \: of \:  \:  rectangle =(16 \times 15) \:  {m}^{2} }}

And,

{ \red{ \tiny{Area  \:  \: of \:  \:  square = Area \:  \:  of \:  \:  rectangle}}}

Therefore,

{ \huge{Area  \:  \: of \:  \:  square}} \\  \\  = >  {(side)}^{2}  = (16 \times 15)  \: {m}^{2}  \\  \\  =  > side =  \sqrt{16 \times 15}  \\  \\  =  > side = { \red{4 \sqrt{15}  \: m \:  \: or \:  \: 15.49 \: m}}

{ \blue {\Huge{14)}}}

The five natural numbers being multiple of 3 are 3, 6, 9, 12, and 15.

Now,

{ \large{Cubes  \:  \: of  \:  \: the \:  \:  numbers  \:  \: above}}  \\  \\  =  >  {(3)}^{3}  = 27 \\  =  > {(6)}^{3}  = 216  \\  =  > {(9)}^{3}  = 729  \\  =  >  {(12)}^{3}   = 1728\\  =  >  {(15)}^{3}  = 3375

Yes, It is positively verified that the cubes of first five natural numbers are the multiple of 27.

{ \green {\Huge{16)}}}

{ \large{210125 = 5 \times 5 \times 5 \times 41 \times 41}}

So, We need to multiply 210125 with 41 so as to get a cube number.

{ \large{The  \: \: product  \: \: so \: \:  found  \: \: will  \:  \:be = 210125  \times  41 = 8615125}}

Now,

{ \huge { \red{\sqrt[3]{8615125}  = 205}}}

Similar questions