Math, asked by monty100, 1 year ago

Please help me in question no.13

Attachments:

Answers

Answered by sivaprasath
1
Solution: (Instead of θ, I use A)

_____________________________________________________________

Given:

sec A =x +  \frac{1}{4x}

_____________________________________________________________

To Prove:

sec A + tan A = 2x (or)  \frac{1}{2x}

_____________________________________________________________

Proof:

We know that,

sec² A - tan² A = 1

=> sec²A = 1+ tan²A

=> sec²A - 1 = tan²A

=>  \sqrt{sec^2A- 1 } = tan A ..(ii)

____________________________________

Substituting value of x in (i),

We get,

=> \sqrt{(x +  \frac{1}{4x})^2 - 1 } = tanA

=>  \sqrt{x^2 +  (2)(\frac{1}{4x})(x) + ( \frac{1}{4x})^2 - 1  } = tan A

=>  \sqrt{x^2 + \frac{2x}{4x} + ( \frac{1}{4x})^2 - 1 } = tanA

=>  \sqrt{x^2 +  \frac{1}{2} + ( \frac{1}{4x} )^2 -1 } = tanA

=>  \sqrt{x^2 -  \frac{1}{2} + ( \frac{1}{4x} )^2} = tanA

=>  \sqrt{(x)^2 - (2)( \frac{1}{4x} )(x)+ ( \frac{1}{4x} )^2} = tanA

=>  \sqrt{(x -  \frac{1}{4x} )^2} = tan A

  => ∴ x -  \frac{1}{4x} = tan A

_______________________________

secA + tan A

=> (x +  \frac{1}{4x}) + (x -  \frac{1}{4x} )

=> 2x +  \frac{1}{4x} -  \frac{`1}{4x}

=> 2x,.

_____________________

As we know,

sec²A - tan²A = 1

As, we know that anything x  it's reciprocal is 1,

(secA + tan A) x  \frac{1}{secA + tanA} = 1

and hence, it has another possiblity,

=>  \frac{1}{secA + tanA} = sec A - tan A .,.(another possiblity),.

=>  \frac{1}{2x}

∴ sec A + tan A =  \frac{1}{2x}

_____________________________________________________________

                                  Hope it Helps !!

=> Mark as Brainliest !!,.
Similar questions