Math, asked by shruti22107, 1 month ago

please help me in rationalizing these 2 ​

Attachments:

Answers

Answered by Salmonpanna2022
2

Step-by-step explanation:

1st solution:

 \frac{1}{ \sqrt{7} }  +  \frac{1}{ \sqrt{3} }  -  \frac{1}{ \sqrt{2} }  \\  \\

  • 1st we Rationalise all the denominator.
  • 2nd we arrange all according to the given question and simplify and last we get the answer.

First \:  term: \frac{1}{ \sqrt{7} }  \\

Rationalising factor of√a is√a . To rationalise the denominator of 1/√2, we multiply this by √7/√7.

we get,

∴  \:  \: \frac{1}{ \sqrt{7} }  =  \frac{1}{ \sqrt{7} }  \times  \frac{ \sqrt{7} }{ \sqrt{7} }  =  \frac{ \sqrt{7} }{ \sqrt{7 \times 7} }  =   \red{\frac{ \sqrt{7} }{7} }

Second  \: term: \:  \frac{1}{ \sqrt{3} }  \\

Rationalising factor of√a is √a. To rationalise the denominator of 1/√3, we multiply this by √3/√3.

we get,

∴  \:  \frac{1}{ \sqrt{3} }  =  \frac{1}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  =  \frac{ \sqrt{3} }{ \sqrt{3 \times 3} }  =  \red{ \frac{ \sqrt{3}} {3 } }

Third  \: term: \frac{1}{ \sqrt{2} }  \\

Rationalising factor of √a is√a. To rationalise the denominator of 1/√2, we multiply this by √2/√2

we get,

∴ \:  \frac{1}{ \sqrt{2} }  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  =  \frac{ \sqrt{2} }{ \sqrt{2 \times 2} }  =   \red{\frac{ \sqrt{2} }{2} }

Hence, \frac{1}{ \sqrt{7} }  +  \frac{1}{ \sqrt{3} }  -  \frac{1}{ \sqrt{2} }  \\  \\

 =  \red{  \frac{ \sqrt{7} }{7}  +  \frac{ \sqrt{3} }{3}  -   \frac{ \sqrt{2} }{2} } \\  \\

 = 0.248207961 \: ans \: in \: Approx \\  \\

2nd solution:

 \frac{1}{ \sqrt{7} +  \sqrt{3}   -  \sqrt{2}  }  \\  \\

In attachment I have answered this problem.⬆️⤴️

I think 1st one question is wrong because denominator is not rationalised.

Attachments:
Similar questions