Math, asked by Anonymous, 25 days ago

Please help me in solving this 30 question.

Attachments:

Answers

Answered by mathdude500
7

 \green{\large\underline{\sf{Solution-}}}

Let us consider positive terms of GP series as

\rm :\longmapsto\:a_1,a_2,a_3,a_4, -  -  -  -

Let further assume that first term of GP series is a and Common ratio of GP series is r and ( r > 0 )

Further it is given that each term is equal to sum of next two terms.

So, it implies its an decreasing GP series with common ratio, r < 1

Now,

According to statement, each term is equal to sum of next two terms.

\rm \implies\:a_1 = a_2 + a_3

\rm \implies\:a = ar +  {ar}^{2}

\rm \implies\:1 = r +  {r}^{2}

\rm \implies\:{r}^{2}  + r - 1 = 0

So, its a quadratic equation in 'r', So by using quadratic formula, we have

\rm :\longmapsto\:\boxed{ \tt{ \: r =  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a} }}

So, here

 \red{\rm :\longmapsto\:a = 1}

 \red{\rm :\longmapsto\:b = 1}

 \red{\rm :\longmapsto\:c =  \:  -  \: 1}

So, on substituting the values in above formula, we get

\rm :\longmapsto\:r \:  =  \: \dfrac{ - 1 \:  \:  \pm \:  \sqrt{ {1}^{2}  - 4(1)( - 1)} }{2(1)}

\rm :\longmapsto\:r \:  =  \: \dfrac{ - 1 \:  \:  \pm \:  \sqrt{ 1 + 4} }{2}

\rm :\longmapsto\:r \:  =  \: \dfrac{ - 1 \:  \:  \pm \:  \sqrt{5} }{2}

\rm :\longmapsto\:r \:  =  \: \dfrac{ - 1 \:  +  \:\sqrt{5} }{2}  \:  \:  \: or \:  \:  \: \dfrac{ - 1 \:-  \:\sqrt{5} }{2} \:  \{rejected \}

\rm \implies\:\boxed{ \tt{ \:  \: r \:  \:  =  \:  \:  \frac{ \sqrt{5} - 1 }{2} \:  \: }}

  • Hence, Option (b) is correct

Basic Concept Used :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\: {r}^{n \:  -  \: 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Similar questions