Math, asked by rishikesh5717, 2 months ago

Please help me in solving this question. ​

Attachments:

Answers

Answered by jitendrabansal
2

Answer:

Pls. Mark me the brainliest if you really like it.

Step-by-step explanation:

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}1&-1&2\\3&0&-2\\1&0&3\end{array}\right]\end{gathered}

Calculation of | A |

\rm :\longmapsto\: |A| = \rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}1&\ - 1&2\\3&0& - 2\\1& 0& 3\end{array}\right | \end{gathered}

★ Expanding along Second column, we get

\:  \: \rm= \:  \:1(9 + 2)

\:  \: \rm= \:  \:11

\bf\implies \: |A| = 11

Calculation of Adjoint of A :-

\rm :\longmapsto\:c_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf 0 &\sf  - 2  \\ \sf 0 &\sf 3 \\\end{array} = 0

\rm :\longmapsto\:c_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf 3 &\sf  - 2  \\ \sf 1 &\sf 3 \\\end{array} =  - 11

\rm :\longmapsto\:c_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf 3 &\sf  0  \\ \sf 1 &\sf 0 \\\end{array} = 0

\rm :\longmapsto\:c_{21} =  {( - 1)}^{2+ 1}\begin{array}{|cc|}\sf  - 1 &\sf  2  \\ \sf 0 &\sf 3 \\\end{array} = 3

\rm :\longmapsto\:c_{22} =  {( - 1)}^{2+ 2}\begin{array}{|cc|}\sf  1 &\sf  2  \\ \sf 1 &\sf 3 \\\end{array} = 1

\rm :\longmapsto\:c_{23} =  {( - 1)}^{2+ 3}\begin{array}{|cc|}\sf  1 &\sf   - 1  \\ \sf 1 &\sf 0 \\\end{array} =  - 1

\rm :\longmapsto\:c_{31} =  {( - 1)}^{3+ 1}\begin{array}{|cc|}\sf   - 1 &\sf  2  \\ \sf 0 &\sf  - 2 \\\end{array} =  2

\rm :\longmapsto\:c_{32} =  {( - 1)}^{3+ 2}\begin{array}{|cc|}\sf  1 &\sf  2  \\ \sf 3&\sf  - 2 \\\end{array} =  8

\rm :\longmapsto\:c_{33} =  {( - 1)}^{3+ 3}\begin{array}{|cc|}\sf  1 &\sf   - 1  \\ \sf 3&\sf  0 \\\end{array} =  3

Hence,

\rm :\longmapsto\:adjA = \begin{gathered}\sf \left[\begin{array}{ccc}0& 3&2\\ - 11&1&8\\0& - 1&3\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\longmapsto\:AadjA

\:  \: \rm= \:  \:\begin{gathered}\sf \left[\begin{array}{ccc}1&-1&2\\3&0&-2\\1&0&3\end{array}\right]\end{gathered}\begin{gathered}\sf \left[\begin{array}{ccc}0& 3&2\\ - 11&1&8\\0& - 1&3\end{array}\right]\end{gathered}

\:  \: \rm= \:  \:\begin{gathered}\sf \left[\begin{array}{ccc}11&0&0\\0&11&0\\0&0&11\end{array}\right]\end{gathered}

\:  \: \rm= \:  11\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}

\:  \: \rm= \:  \: |A| I

\bf\implies \:A(adjA) =  |A|I -  - (1)

Now,

Consider,

\rm :\longmapsto\:(adjA)A

\:  \: \rm= \:  \:\begin{gathered}\sf \left[\begin{array}{ccc}0& 3&2\\ - 11&1&8\\0& - 1&3\end{array}\right]\end{gathered}\begin{gathered}\sf \left[\begin{array}{ccc}1&-1&2\\3&0&-2\\1&0&3\end{array}\right]\end{gathered}

\:  \: \rm= \:  \:\begin{gathered}\sf \left[\begin{array}{ccc}11&0&0\\0&11&0\\0&0&11\end{array}\right]\end{gathered}

\:  \: \rm= \:  11\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}

\:  \: \rm= \:  \: |A| I

\bf\implies \:(adjA) A=  |A|I -  - (2)

★ From equation (1) and equation (2), we get

\bf\implies \:(adjA) A=  A(adjA) = |A|I

Similar questions