Math, asked by Anonymous, 7 months ago

Please help me in these questions.....☝️☝️

Don't spam ❌

Give only relevant answers .....

Please don't spam ❌​

Attachments:

Answers

Answered by surya5299
55

\bf \huge \underline{ \orange{Required \: Answer : }}</p><p>

Given secΘ = 10/9 , calculate all other trigonometric ratios.

\bf \huge \underline{ \orange{answer : }}</p><p>

\begin{gathered}\sf{sec \: \theta = \frac{hyptenuse}{adjecent} = \frac{10}{9} } \\ \\\end{gathered}</p><p>

\bf{we \: will \: find \:the \: oppsite \: side }

\begin{gathered}\to \tt{according \: to \: the \: attached \: diagram } \\\end{gathered}

AB² + BC²=AC²

➜ AB² = AC² - BC²

➜ AB² = 10² - 9²

➜ AB² = 100 - 81

➜ AB² = 27

∴ AB = √27

\sf \small{all \: other \: trigonometric \: ratios \:are \: as \: follows : }

\begin{gathered}\to \tt{sin \theta = \frac{opposite}{hypotenuse} = \frac{ \sqrt{27} }{10} } \\ \\ \to \tt{cos \ theta = \frac{adjecent}{hypotenuse} = \frac{9}{10} } \\ \\ \to \tt{tan \theta = \frac{opposite}{adjecent} = \frac{ \sqrt{27} }{9} } \\ \\ \to \tt{cot \theta = \frac{adjecent}{opposite} = \frac{9}{ \sqrt{27} } } \\ \\ \to \tt{cosec \theta = \frac{hypotenuse}{opposite} = \frac{10}{ \sqrt{27} } }\end{gathered}</p><p>

Answered by DivineSpirit
1

Given secΘ = 10/9 , calculate all other trigonometric ratios.

\begin{gathered}\begin{gathered}\sf{sec \: \theta = \frac{hyptenuse}{adjecent} = \frac{10}{9} } \\ \\\end{gathered} &lt; /p &gt; &lt; p &gt; \end{gathered}

\bf{we \: will \: find \:the \: oppsite \: side }

\begin{gathered}\begin{gathered}\to \tt{according \: to \: the \: attached \: diagram } \\\end{gathered} \end{gathered}

AB² + BC²=AC²

➜ AB² = AC² - BC²

➜ AB² = 10² - 9²

➜ AB² = 100 - 81

➜ AB² = 27

∴ AB = √27

\sf \small{all \: other \: trigonometric \: ratios \:are \: as \: follows : }

\begin{gathered}\begin{gathered}\to \tt{sin \theta = \frac{opposite}{hypotenuse} = \frac{ \sqrt{27} }{10} } \\ \\ \to \tt{cos \ theta = \frac{adjecent}{hypotenuse} = \frac{9}{10} } \\ \\ \to \tt{tan \theta = \frac{opposite}{adjecent} = \frac{ \sqrt{27} }{9} } \\ \\ \to \tt{cot \theta = \frac{adjecent}{opposite} = \frac{9}{ \sqrt{27} } } \\ \\ \to \tt{cosec \theta = \frac{hypotenuse}{opposite} = \frac{10}{ \sqrt{27} } }\end{gathered} &lt; /p &gt; &lt; p &gt; \end{gathered}

Similar questions