Math, asked by varshiniHY, 9 months ago

please help me in this ​

Attachments:

Answers

Answered by Anonymous
11

To Find :-

\sf{ \implies \: Term \: independent \: of \: x  \: in \: (  {x}^{2}  -  \frac{1}{x} )^{9}  }

Solution :-

Here we have to use binomial theorem.

\sf{ \implies \: Term \: independent \: of \: x  \: is \: required  }

→ Let's suppose (r+1)th term contains x⁰ .

\sf{ \implies \: T_{r + 1} =  {}^{n}C _r .\:  {x}^{n - r} .\:  {a}^{r}  }

\sf{ \implies \: T_{r + 1} =  {}^{9}C _ r.\:  {{x}^{2}}^{9 - r} .\:  {\dfrac{1}{x}}^{r}  }

\sf{ \implies \: T_{r + 1} =  {}^{9}C _ r.\:  {x}^{2 \times 9 - 2r }.\:  {x}^{-r}  }

\sf{ \implies \: T_{r + 1} =  {}^{9}C _ r.\:  {x}^{18 - 2r }.\:  {x}^{-r}  }

\sf{ \implies \: T_{r + 1} =  {}^{9}C _ r.\:  {x}^{18 -2r - r}   }

\sf{ \implies \: T_{r + 1} =  {}^{9}C _ r.\:  {x}^{18 -3r}   }

\sf{ \implies \: {x}^{0} = {x}^{18-3r}   }

\sf{ \implies \: 18 - 3r = 0    }

\sf{ \implies \: 3r = 18   }

\sf{ \implies \: r = \dfrac{18}{3} = 6  }

The term independent of x is 7th

So 6+1 = 7 th

Verification :-

\sf{ \implies \: T_{6 + 1} =  {}^{9}C _6 .\:  {{x}^{2}}^{9 - 6} .\:  {\dfrac{1}{x}}^{6}  }

\sf{ \implies \: T_{6 + 1} =  {}^{9}C _6 .\:  {{x}^{2}}^{3} .\:  {\dfrac{1}{x}}^{6}  }

 \sf{  \implies   \dfrac{9 \times 8 \times 7}{3 \times 2 \times 1}  \times  {x}^{6} \times \dfrac{1}{ {x}^{6} }   }

 \sf{  \implies   T_7 = \dfrac{9 \times 8 \times 7}{3 \times 2 \times 1}  }

 \sf{  \implies   T_7 = 84 }

Answered by yumn
10

Answer:

if I do this then my first account means this account will not get deleted na

Similar questions