Math, asked by kiranbele909, 1 month ago

please help me in this maths question help me​

Attachments:

Answers

Answered by user0888
5

Given:-

  • \dfrac{a}{b} =\dfrac{5}{3}

Solution:-

The correct method is as follows.

Let a=5k and b=3k.

\therefore\dfrac{a+7b}{7b} =\dfrac{5k+21k}{21k} =\dfrac{26\cancel{k}}{21\cancel{k}} =\dfrac{26}{21}

According to your question,

\dfrac{a}{b} =\dfrac{5}{3}

Now we divide by 7 on both sides.

\therefore \dfrac{a}{7b} =\dfrac{5}{21}

Then we add one on both sides.

\therefore \dfrac{a+7b}{7b} =\dfrac{5+21}{21}=\dfrac{26}{21}

Answered by PopularAnswerer01
35

To Find:-

  • \sf \: Find \: the \: ratio \: of \: \:  \dfrac { a + 7b } { 7b }

Solution:-

Given ,

  • \sf \: \dfrac { a } { b } = \dfrac { 5 } { 3 }

a = 5k , b = 3k

Substitute:-

\longrightarrow\sf \: \dfrac { 5k + 7( 3k ) } { 7( 3k ) }

\longrightarrow\sf \: \dfrac { 5k + 21k } { 21k }

\longrightarrow\sf \: \dfrac { 26k } { 21k }

\longrightarrow\sf \: \dfrac { 26 } { 21 }

Hence ,

  • Value of \sf \: \dfrac { a + 7b } { 7b } = \dfrac { 26 } { 21 }
Similar questions