Math, asked by PREDATORXS, 1 year ago

PLEASE HELP ME IN THIS QUESTION!!!!!​

Attachments:

Answers

Answered by tahseen619
6

 {2}^{ - m}  \times  \frac{1}{ {2}^{m} }  =  \frac{1}{4}   \\  {2}^{ - m} \times  {2}^{ - m}   =  {2}^{ - 2}  \\  \\  {2}^{ - 2m}  =  {2}^{ - 2}  \\  - 2m =  - 2 \\ m = 1
 \frac{1}{14}( ( { {4}^{m} )}^{ \frac{1}{2} }  +  {( \frac{1}{ {5}^{m} } )}^{ - 1} ) \\  \frac{1}{14} ( {4}^{ \frac{1}{2}  }  + 5) \\  \frac{1}{14} (2 + 5) \\  \frac{1}{14}  \times 7 \\  \frac{1}{2}


PREDATORXS: thank you
welcome101: welcome
Answered by welcome101
3

Answer:

2 {}^{ - m}  \times  \frac{1}{2 {}^{m} }  =  \frac{1}{4}  \\  \frac{1}{2 {}^{m} }  \times  \frac{1}{2 {}^{m} }  =  \frac{1}{4}  \\ ie \:  \:  \:  \: ( \frac{1}{2 {}^{m} } ) {}^{2}  =  \frac{1}{4}  \\ ie \:  \:  \:  \:  \frac{1}{2 {}^{m} }  = \sqrt \frac{1}{4}  =  \frac{1}{2 }  \\ here \: base \: are \: same \: thus \: power \: is \: equal \\ means \: m = 1 \\ hence \: as \: per \: question \\ \frac{1}{14 }  \times ((4 {}^{m}  ){}^{ \frac{1}{2} }  + ( \frac{1}{5 {}^{m} } ) {}^{ - 1} ) \\ substitute \: here \: m = 1 \: we \: will \: get \\  \frac{1}{14}  \times (2 + 5) =  \frac{1}{2}  \\ thus \:the \:  required \: answer \: is \:  \frac{1}{2} .

Similar questions