Math, asked by disha6878, 9 months ago

please help me in this question ​

Attachments:

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x^{2}+y^{2}=98}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ \tt:  \implies y =  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2}  }  \\  \\ \red{\underline \bold{to \: find : }} \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  = ?

• According to given question :

 \bold{Rationalising : } \\  \tt:  \implies x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  } \times  \frac{ \sqrt{3}   +   \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }   \\  \\ \tt:  \implies x = \frac{ (\sqrt{3} +  \sqrt{2} )^{2} }{ {( \sqrt{3}})^{2} -  { (\sqrt{2} })^{2}   }  \\  \\ \tt:  \implies x = \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2} )}^{2}  + 2 \sqrt{6}  }{3 - 2}  \\  \\ \tt:  \implies x =3 + 2 + 2 \sqrt{6}  \\  \\ \tt:  \implies x =5 + 2 \sqrt{6}  \\  \\  \bold{Similarly : } \\ \tt:  \implies y = \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

 \tt:  \implies y = \frac{ (\sqrt{3}  -  \sqrt{2})^{2} }{ {( \sqrt{3} )}^{2} -  { (\sqrt{2} })^{2}  }  \\  \\ \tt:  \implies y= \frac{ { (\sqrt{3} })^{2} +  {( \sqrt{2} )}^{2}  - 2 \sqrt{6}  }{3 - 2 }  \\  \\ \tt:  \implies y=3 + 2 - 2 \sqrt{6}  \\  \\ \tt:  \implies y =5 - 2 \sqrt{6}  \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =(x + y)^{2}  - 2xy \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =(5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6} )^{2}  - 2(5  +  2\sqrt{6} )(5 - 2 \sqrt{6} ) \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} = {10}^{2}  - 2( {5}^{2}  -  {(2 \sqrt{6}) }^{2}  \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =100 - 2(25 - 24) \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =100 - 2 \\  \\  \green{\tt:  \implies  {x}^{2}  +  {y}^{2} =98}

Answered by Anonymous
21

⠀⠀⠀⠀⠀\huge{ \color{purple}{ \bold{ \bf{AnSweR }}}}

x² + y ² = 98

⠀⠀⠀\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanA{\green{TiOn }}}}}}}}

  \large\underline{ \underline{ \color{green}{ \bold {Given}}}}

\bf\:x= \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} } \\

\bf\:x= \frac{ \sqrt{ 3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  } \\

  \large\underline{ \underline{ \color{green}{ \bold {To \:Find}}}}

we need to find the Value of x²+ y²

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \color{red}{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀

Rationalising the denominators of x and y values.

 </strong>\implies<strong> \bf\:x= \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times   \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3 } +  \sqrt{2}  } \\  \\ </strong><strong>\implies</strong><strong> \bf \: x = \frac{ ({ \sqrt{3})  }^{2}  +(  { \sqrt{2} }^{2}) + 2 \times  \sqrt{3}  \times \sqrt{2}   }{( \sqrt{3}) {}^{2}  -  (\sqrt{2} ) {}^{2}   }  \\  \\ </strong><strong>\implies</strong><strong> \bf \: x = \frac{3 + 2 + 2 \times  \sqrt{6} }{3 - 2}  \\  \\</strong>\implies<strong>  \bf \: x =  \frac{5 + 2 \sqrt{6} }{1}

  \bf\:y = \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} } \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ \bf \: y =  \frac{ (\sqrt{3}) {}^{2}  +   { (\sqrt{2} )}^{2}  - 2 \times  \sqrt{3 }   \times  \sqrt{2}  }{{ (\sqrt{3} )  {}^{2}  - ( \sqrt{2} ){}^{2}   } }  \\  \\  \bf \: y =  \frac{3 + 2 - 2 \times  \sqrt{6} }{3 - 2} \\  \\  \bf \: y =  \frac{5- 2 \sqrt{6} }{1}

Now,

x² + y² =  \bf\:(5 + 2 \sqrt{6} ) {}^{2} + (5 - 2 \sqrt{6}){}^{2}

x² + y² =  </strong><strong>\</strong><strong>s</strong><strong>m</strong><strong>a</strong><strong>l</strong><strong>l</strong><strong> \bf \: 25 + 24 + 20 \sqrt{6} + 25 + 24 - 20 \sqrt{6}

x² + y² =  \bf \: 49 + 49 \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 98

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions