Math, asked by anshpandey2812, 3 months ago

please help me in this question​

Attachments:

Answers

Answered by aryan073
1

Given :

• Evaluate each of the following expression for x=-2 ,y=-1 ,z=3

 \bf \: (1)3 {x}^{2} y + 5x {y}^{2}  + 2xyz

  \\ \bf \: (2) {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz

 \\  \bf \: (3) \:  \frac{x}{y}  +  \frac{y}{z}  +  \frac{z}{x}

To Find :

•The remainder from this equation=?

Solution :

•The given values of x =-2 ,y=-1 ,z=3

  \bf \: (1)3 {x}^{2} y + 5x {y}^{2}  + 2xyz

Substituting the values of x, y, and z

  \\ \implies \sf \: 3 {( - 2)}^{2} ( - 1) + 5( - 2) {( - 1)}^{2}  + 2( - 2)( - 1)(3)

 \\  \implies \sf \: 3(4)( - 1) + 5( - 2)(1) + 2(2)(3)

 \implies \sf \:  - 12 + ( - 10) + 12

 \implies \sf \:  - 22 + 12

 \implies \boxed{ \sf{ - 10}}

 \bf \: (2)  {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz

Substituting the values of x ,y, and z

 \\  \implies  \sf {( - 2)}^{3}  +  {( - 1)}^{3}  +  {(3)}^{3}  + 3( - 2)( - 1)(3)

 \implies \sf \:  - 8 - 1 + 27 + 3(2)(3)

 \implies \sf \:  - 9 + 27 + 18

 \implies \sf \: 18 + 18 = 36

 \implies \boxed{ \sf{36}}

  \\ \bf \: (3) \frac{x}{y}  +  \frac{y}{z}  +  \frac{z}{x}

Substituting the values of x, y, and z

  \\ \implies \sf \:  \frac{ - 2}{ - 1}  +  \frac{ - 1}{3}  +  \frac{3}{ - 1}

 \\  \implies \sf \: 2 -  \frac{1}{3}  - 3

 \\  \implies \sf \:  \frac{6 - 1}{3}  - 3

  \\ \implies \sf \:  \frac{5}{3}  - 3 =  \frac{5 - 9}{3}

 \implies \boxed{ \sf{ \frac{ - 4}{3}}}

Similar questions