Math, asked by shabanaghufran, 1 year ago

Please help me in this question. Explaination also.....

Attachments:

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{$\alpha,\,\beta,\,\gamma$ are zeros of $2x^3-3x^2-5x+6k$}

\textbf{To find:}

\text{The value of $\dfrac{\alpha\beta\gamma+\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha+\beta+\gamma}$}

\textbf{Solution:}

\text{Since $2x^3-9x^2+kx+12$ is divided by $x+2$, the remainder is -42}

\text{By remainder theorem, we get}

2(-2)^3-9(-2)^2+k(-2)+12=-42

-16-36-2k+12=-42

-52-2k+12=-42

-40-2k=-42

-2k=-2

\implies\bf\,k=1

\text{Since $\alpha,\,\beta,\,\gamma$ are zeros of $2x^3-3x^2-5x+6$, we have}

\alpha+\beta+\gamma=\frac{3}{2}

\alpha\beta+\beta\gamma+\gamma\alpha=\frac{-5}{2}

\alpha\beta\gamma=\frac{-6}{2}=-3

\text{Now,}

\dfrac{\alpha\beta\gamma+\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha+\beta+\gamma}

=\dfrac{-3+(\frac{-5}{2})}{\frac{3}{2}}

=\dfrac{\frac{-11}{2}}{\frac{3}{2}}

=\dfrac{-11}{3}

\therefore\textbf{The value of $\dfrac{\alpha\beta\gamma+\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha+\beta+\gamma}$ is $\bf\,\dfrac{-11}{3}$}

\implies\textbf{Option (3) is correct}

Similar questions