Math, asked by saffim2005, 10 months ago

please help me in this question i will mark as brainlist

Attachments:

Answers

Answered by Anonymous
1

I \: hope \: it \: will \: help \: u \\ Thank \: u

Attachments:
Answered by himanshu112449
0

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  +  \frac{1}{2 -  \sqrt{5} } \\  \frac{ (\sqrt{5} -  \sqrt{3)}   + 2(2  +  \sqrt{3)} }{(2 +  \sqrt{3)}( \sqrt{5}   -  \sqrt{3} )}   +  \frac{1}{2 -  \sqrt{5} }  \\   \frac{ \sqrt{5} -  \sqrt{3}  + 4 + 2 \sqrt{3}  }{2 \sqrt{5}  - 2 \sqrt{3}  + \sqrt{15}   - 3}  +  \frac{1}{2  -  \sqrt{5} }  \\  \frac{ \sqrt{5} +  \sqrt{3} + 4  }{2( \sqrt{5}  -  \sqrt{3} ) +  \sqrt{15} - 3 }  +  \frac{1}{2 -  \sqrt{5} }  \\  \frac{(2 -  \sqrt{5} )( \sqrt{5}  +  \sqrt{3}  + 4) + 2( \sqrt{5}  -  \sqrt{3) } +  \sqrt{15}  - 3 }{(2 -  \sqrt{5} )(2( \sqrt{5}  -  \sqrt{3}) +  \sqrt{15 }  - 3) }  \\  \frac{2 \sqrt{5} + 2 \sqrt{3}  + 8 - 5 -  \sqrt{15} - 4 \sqrt{5}   + 2 \sqrt{5} - 2 \sqrt{3} +  \sqrt{15}    - 3 }{(2 -  \sqrt{5})(2 \sqrt{5}  - 2 \sqrt{3}  +  \sqrt{15} - 3  }  \\  \frac{4 \sqrt{5}   - 4 \sqrt{5} + 8 - 8 -  \sqrt{15}  +  \sqrt{15}  + 2 \sqrt{3} - 2 \sqrt{3}   }{(2 -  \sqrt{5})(2 \sqrt{5}  - 2 \sqrt{3}  +  \sqrt{15}  - 3) }  \\  \frac{0}{(2 -  \sqrt{5} )(2 \sqrt{5}  -  2 \sqrt{3} +  \sqrt{15}   - 3) }  \\ 0 \:  \: hence \: prove

Similar questions