Math, asked by bg2502, 11 months ago

Please help me in this question with steps

Attachments:

Answers

Answered by purnima3061977
2

Answer:

Ans. = 14

Step-by-step explanation:

Here it is frnd !!

...plz mark as brainliest...

Attachments:
Answered by brainlyaryan12
4

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

if \:x=2+\sqrt{3} , \:find \: the\:value\:of\:x^2+\frac{1}{x^2}

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • x=2+\sqrt{3}

⇒To Find:

  • x^2+\frac{1}{x^2}

Solution:

x=2+\sqrt{3}

On squaring both sides:-

x^2=(2+\sqrt{3})^2

x^2=4+3+4\sqrt{3} [using formula]

x^2=7+4\sqrt{3}

Now-

\frac{1}{x^2}=\frac{1}{7+4\sqrt{3}}

\frac{1}{x^2}=\frac{1}{7+4\sqrt{3}}\times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}

\frac{1}{x^2}=\frac{7-4\sqrt{3}}{7^2-(4\sqrt{3})^2} [Using Formula]

\frac{1}{x^2}=\frac{7-4\sqrt{3}}{49-48}

\frac{1}{x^2}=7-4\sqrt{3}

Now adding x^2 \:and\: \frac{1}{x^2}

7{\cancel{+4\sqrt{3}}}+7{\cancel{-4\sqrt{3}}}

\huge{\pink{\overbrace{\underbrace{Ans=14}}}}

________________________________________

Formulas Used :-

  • (a+b)^2=a^2+b^2+2ab
  • (a+b)(a-b)=a^2-b^2

★━★━★━★━★━★━★━★━★━★━★

▂ ▄ ▅ ▆ ▇ █⚡ ᗩᖇƳᗩᑎ ⚡█ ▇ ▆ ▅ ▄ ▂

★━★━★━★━★━★━★━★━★━★━★

Similar questions