Math, asked by brutileona1, 9 months ago

Please,help me!It is integral with substitution

Attachments:

Answers

Answered by Anonymous
136

Question :

Integrate

1) \int \dfrac{cosx \:  dx}{4  + sin {}^{2}x}

2) \int \dfrac{dx}{x(1 +  ln {}^{2} x)}

Theory:

Integration is the inverse process of Differentiation.

•Methods of integration

Integration by substitution :

The given integral  \int f(x)dx can be transformed into another by changing the independent variable x to t by substituting x = g(t)

Formula's used :

1) \int \frac{1}{x {}^{2} + a {}^{2}  }  =  \frac{1}{a}  \tan {}^{ - 1} ( \frac{x}{a} )

2) \int \frac{dx}{1 + x {}^{2} }  =  \tan {}^{ - 1} (x)

Solution :

1) I= \int  \bf \dfrac{cosx \: dx}{4 + sin {}^{2} x}

Let sinx = t

 \frac{dy}{dx}  = cosx\implies  \frac{dt}{cosx}  = dx

I=  \int \frac{ \cancel cosx}{4 + t {}^{2} } \times  \frac{dt}{ \cancel cosx}

 I=  \int  \frac{dt}{4+ t {}^{2} }

 I=  \int \frac{dt}{2 {}^{2}  + t {}^{2} }

use formula : \int\:\frac{dx}{x{}^{2}+a{}^{2}}

I =  \frac{1}{2} \tan {}^{ - 1} ( \frac{t}{2} )  + c

Put t = sinx

 I=  \dfrac{1}{2} \tan( \frac{ \sin  x}{2} )  + c

__________________________

2) I=\int \bf \dfrac{dx}{x(1 +ln {}^{2} x) }

Let lnx = t ⇒xdt = dt

 \int  \bf \frac{dx}{x(1 + ln {}^{2}x) }  =  \int \frac{ \cancel  xdt}{  \cancel x(1 + t {}^{2} )}

I =  \int \frac{dt}{1 + t {}^{2} }

 I=  \tan {}^{ - 1} (t)  + c

put t = ln x

 I=  \tan {}^{ - 1} (lnx)  + c

Similar questions