Math, asked by simranphogat21, 11 months ago

Please help me its urgent​

Attachments:

Answers

Answered by abhishekmandaliya170
0

Answer:

3x^5/3/5+2e^x-logx

Step-by-step explanation:

first do integration of x^2/3

then e^x is constant term

and integration of 1/x is logx

Answered by Anonymous
17

Solution

Given Expression,

 \displaystyle \sf \: l =  \int( {x}^{2}  - 3x + 4)dx

We know that,

 \displaystyle \:  \sf \: l =  \int {x}^{n} dx \\  \\  \longrightarrow \boxed{  \sf \: l =  \dfrac{x {}^{n + 1}}{n + 1}}

Thus,

 \displaystyle \:  \sf \: l =  \int {x}^{2} dx -3 \int \: xdx + 4 \int \: dx \\  \\   \implies \:  \sf \: l =  \dfrac{ {x}^{2 + 1} }{2 + 1}  - 3 \frac{x {}^{1 + 1} }{1 + 1}  + 4 x \\  \\

While integrating an indefinite integral,an arbitrary constant 'c' is added to the final step

\implies \:  \boxed{ \boxed{ \sf \: l =  \dfrac{x {}^{3} }{3}  -  \frac{ {3x}^{2} }{2}  + 4x + c}}

\rule{300}{2}

Given Expression,

 \displaystyle \sf \: l =  \int( {x}^{ \frac{2}{3} }   + 2 {e}^{x}   -  \dfrac{1}{x} )dx

  • Integral of e^x is e^x + c

Thus,

 \displaystyle \:  \sf \: l =  \int {x}^{ \frac{2}{3} } dx -2 \int \:  {e}^{x} dx +  \int  {x}^{ - 1} \: dx \\  \\   \implies \:  \sf \: l =  \dfrac{ {x}^{ \frac{2}{3}  + 1} }{ \dfrac{2}{3}  + 1}   + 2 {e}^{x}  -  ln(x)  \\  \\ \implies \:  \boxed{ \boxed{ \sf \: l =  \dfrac{3 \sqrt[3]{ {x}^{5} } }{5}   + 2 {e}^{x}   -  log(x)  + c}}

Here,

Integrating x^-1 would result in an undefined term. Therefore,

  • Integral of 1/x is log(x) + c

\rule{300}{2}

Given Expression,

\displaystyle \sf l = \int cosec \ x(cosec \ x - cot \ x ) dx

The above expression can be re written as :

cosec x ( cosec x - cot x )

= cosec²x - cosec x.cot x

Integrals of :

  • cosec²x = - cot x + c

  • cosec x.cot x = - cosec x + c

Thus,

\displaystyle \sf l = \int cosec^2x dx - \int cosec \ x.cot \ xdx \\ \\ \implies \boxed{\boxed{\sf l= cosec \ x - cot \ x  + c}}

\rule{300}{2}

\rule{300}{2}

Similar questions