Math, asked by Ronakmangal189, 4 months ago

please help me monday ko mera paper h​

Attachments:

Answers

Answered by harshvirsing55
23

Answer:

18 cm

Step-by-step explanation:

r_{1}= 2cm  r_{2}=12cm      r_{3}= 16cm

Spheres of radii r_{1}, r_{2}, r_{3}   are melted into a sphere of radius r.

\frac{4}{3} π r^{3}_{1} +\frac{4}{3} π r^{3}_{2} + \frac{4}{3} π r^{3}_{3}  = \frac{4}{3} π r^{3}

r^{3} =  r^{3}_{1} + r^{3}_{2} + r^{3}_{3}  

r^{3} = 2^{3} + 12^{3} + 16^{3}

r = 18  

Answered by llJASMINEll
13

Answer:

I agree with you we are only friends not more but please don't waste ur point

Answer

Open in answr app

(i) To verify : A×(B∩C)=(A×B)∩(A×C)

We have B∩C={1,2,3,4}∩{5,6}=ϕ

∴ L.H.S = A×(B∩C)=A×ϕ=ϕ

A×B={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}

A×C={(1,5),(1,6),(2,5),(2,6)}

 ∴R.H.S.=(A×B)∩(A×C)=ϕ

∴L.H.S=R.H.S

Hence A×(B∩C)=(A×B)∩(A×C)

(ii) To verify: A×C is a subset of B×D

A×C={(1,5),(1,6),(2,5),(2,6)}

B×D={(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),

                  (3,8),(4,5),(4,6),(4,7),(4,8)}

We can observe that all the elements of set A×C are the elements of set B×D 

Therefore A×

Similar questions