Math, asked by mansigoel024, 7 months ago

Please help me out.​

Attachments:

Answers

Answered by rohitkhajuria90
1

Answer is 11

Just do this to the each fraction

 \frac{1}{ \sqrt{100} -  \sqrt{99}  }  =   \frac{1}{ \sqrt{100} -  \sqrt{99}  } \times \frac{ \sqrt{100} +  \sqrt{99}  }{ \sqrt{100}  +  \sqrt{99} }  \\  =  \frac{ \sqrt{100} +  \sqrt{99}  }{( \sqrt{100} -  \sqrt{99})( \sqrt{100} -  \sqrt{99})    }  \\  =  \frac{ \sqrt{100} +  \sqrt{99}  }{ {( \sqrt{100}) }^{2} -  {( \sqrt{99}) }^{2}  }  \\  =  \frac{ \sqrt{100} +  \sqrt{99}  }{100 - 99}  \\  =  \sqrt{100}  +  \sqrt{99}

Similarly if you the same for all fractions, you get

 \sqrt{100 }  +  \sqrt{99}  -  \sqrt{99}   -   \sqrt{98}   +   \sqrt{98}   +  \sqrt{97}  -  \sqrt{97}  + ................  -   \sqrt{2}  +  \sqrt{2}  +  \sqrt{1}

All the terms from will cancel out except

 \sqrt{100}  \: and \:  \sqrt{1}

So we get

 \sqrt{100}   +  \sqrt{1}  = 10 + 1 = 11

Similar questions