Math, asked by ishika707114, 6 months ago

please help me out ​

Attachments:

Answers

Answered by Anonymous
10

Required Answer

Solution :

 \tt \:  \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  +  \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{b - c} {x}^{a - c}  }  \\   \\ \\  \\  : \implies \: \tt \:  \frac{ {x}^{a} }{  {x}^{a} \bigg(1 +  {x}^{b - a}  +  {x}^{c - a} \bigg) }  +  \frac{ {x}^{b} }{ {x}^{b}  \bigg(1 +  {x}^{a - b}  +  {x}^{c - b}  \bigg)}  +  \frac{ {x}^{c} }{  {x}^{c} \bigg( 1 +  {x}^{b - c} +  {x}^{a - c} \bigg)  } \\  \\   \\ \\   : \implies \tt  \frac{ {x}^{a} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }  + \frac{ {x}^{b} }{ {x}^{b}  +  {x}^{a}  +  {x}^{c} }  + \frac{ {x}^{c} }{ {x}^{c}  +  {x}^{b}  +  {x}^{a} }  \\  \\  \\  \\  :  \implies \tt  \bigg(\frac{  \cancel{{x}^{a} +  {x}^{b}   +  {x}^{c}} }{ \cancel{ {x}^{a}  +  {x}^{b}  +  {x}^{c} } } \bigg) \\  \\  \\   \\  \bf   \:  \large :  \implies  \large \: { \bf \: 1} \\  \\  \\  \\  \huge \red{ \mathfrak{Happy \:  \:  New  \:  \: Year  \:  \: 2021}} \\  \\  \\  \\  \small \tt \colorbox{aqua}{@StayHigh}

Answered by DILhunterBOYayus
16

\sf{\bold{\blue{\underline{\underline{Given}}}}}

\begin{gathered} \tt \: \frac{1}{1 + {x}^{b - a} + {x}^{c - a} } + \frac{1}{1 + {x}^{a - b} + {x}^{c - b} } + \frac{1}{1 + {x}^{b - c} {x}^{a - c} }\end{gathered}⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

●Simplified this equation. ⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

\begin{gathered} \tt \: \frac{1}{1 + {x}^{b - a} + {x}^{c - a} } + \frac{1}{1 + {x}^{a - b} + {x}^{c - b} } + \frac{1}{1 + {x}^{b - c} {x}^{a - c} } \\ \\ \\ \\  \rightsquigarrow \: \tt \: \frac{ {x}^{a} }{ {x}^{a} \bigg(1 + {x}^{b - a} + {x}^{c - a} \bigg) } + \frac{ {x}^{b} }{ {x}^{b} \bigg(1 + {x}^{a - b} + {x}^{c - b} \bigg)} + \frac{ {x}^{c} }{ {x}^{c} \bigg( 1 + {x}^{b - c} + {x}^{a - c} \bigg) } \\ \\ \\ \\  \rightsquigarrow \tt \frac{ {x}^{a} }{ {x}^{a} + {x}^{b} + {x}^{c} } + \frac{ {x}^{b} }{ {x}^{b} + {x}^{a} + {x}^{c} } + \frac{ {x}^{c} }{ {x}^{c} + {x}^{b} + {x}^{a} } \\ \\ \\ \\  \rightsquigarrow\tt \bigg(\frac{ \cancel{{x}^{a} + {x}^{b} + {x}^{c}} }{ \cancel{ {x}^{a} + {x}^{b} + {x}^{c} } } \bigg) \\ \\ \\ \\ \bf \: \large  \rightsquigarrow \large \: {\tt 1 }\end{gathered}

Similar questions