Math, asked by sarthak337, 4 months ago

please help me out !!​

Attachments:

Answers

Answered by DynamicCrystal
3

AnsweR :

Option ( b )

 \sf \bold{(x - y)(y - z)(z - x)}

SolutioN :

 \sf {x}^{2} (y - z) +  {y}^{2} (z - x) +  {z}^{2} (x - y)

 \sf  = {x}^{2} y -  {x}^{2} z +  {y}^{2} z -  {y}^{2} x +  {z}^{2} x -  {z}^{2} y

 \sf =  {x}^{2} y -  {x}^{2} z -  {y}^{2} x +  {z}^{2} x +  {y}^{2} z -  {z}^{2} y

 \sf =  {x}^{2} (y - z) - x( {y}^{2}  -  {z}^{2} ) + yz(y - z)

 \sf =  {x}^{2} (y - z) - x(y - z)(y + z) + yz(y - z)

 \sf = (y - z)[ {x}^{2} - x(y + z) + yz ]

 \sf = (y - z)[ {x}^{2}  - xy - xz + yz]

 \sf = (y - z)[x(x - y) - z(x - y)]

 \sf = (y - z)( x - y)(x - z)

or

 \sf = (x - y)(y - z)(z - x)

Answered by shanvisharma
4

Answer:

option B is the correct answer

Similar questions