Math, asked by Anonymous, 5 months ago

Please help me out I am in a trouble.
kindly answer the question with explanation.
Thank you.

Attachments:

Answers

Answered by vermanandini169
1

Answer:

Angle BOD= 50°

Angle AOD= 130°

Step-by-step explanation:

hope it helps you if it helps you mark me as a brainiliest

Answered by Anonymous
2

\large\boxed{\bf{\green{\underline{\underline{✤\</p><p>:GIVEN\:✤}}}}}

\bold\angle{AOC}=50°

\large\boxed{\bf{\green{\underline{\underline{✤\</p><p>:To\:Find\:✤}}}}}

\bold\angle{BOD}=?

\bold\angle{AOD}=?

\large\boxed{\bf{\green{\underline{\underline{✤\</p><p>:SOLUTION\:✤}}}}}

AB and CD both are two straight lines.

We know that the sum of angles in a straight line is 180°

\bold\angle{AOC}=50°

So,

\bold\angle</strong><strong>{</strong><strong>B</strong><strong>O</strong><strong>D</strong><strong>}</strong><strong>=5</strong><strong>0</strong><strong>° because it is vertically opposite angles.

\bold\angle{AOC}+\angle{COB}=180°

(sum of angles in a straight line is 180°)

Let \bold\angle{COB\:be\:x}

Therefore,

\Longrightarrow\:50°+x=180°

\Longrightarrow</strong><strong>\</strong><strong>:</strong><strong>x=180°</strong><strong>-</strong><strong>5</strong><strong>0</strong><strong>°</strong><strong>

\Longrightarrow\:</strong><strong>x</strong><strong>=</strong><strong>1</strong><strong>3</strong><strong>0</strong><strong>°

\bold</strong><strong>\</strong><strong>t</strong><strong>h</strong><strong>e</strong><strong>r</strong><strong>e</strong><strong>f</strong><strong>o</strong><strong>r</strong><strong>e</strong><strong>\angle</strong><strong>{</strong><strong>C</strong><strong>O</strong><strong>B</strong><strong>}</strong><strong>=</strong><strong>1</strong><strong>3</strong><strong>0</strong><strong>°

So, \bold\angle</strong><strong>{</strong><strong>A</strong><strong>O</strong><strong>D</strong><strong>}</strong><strong>=</strong><strong>1</strong><strong>3</strong><strong>0</strong><strong>° because it is vertically opposite angles.

\small{\sf{\green{\underline{\underline{✤\:ANSWERS\:ARE\:✤}}}}}

\bold\angle{AOD}=130°

\bold\angle{BOD}=50°

Similar questions