Math, asked by jyotichhallani83nir, 4 months ago

please help me out of this question​

Attachments:

Answers

Answered by Anonymous
2

Solution:-

Given

 \sf \to \: x = 2 -  \sqrt{3}

To find the value

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \:  \: and \:  \: x {}^{2}  -  \dfrac{1}{ {x}^{2} }

Now we can write

 \sf \to \:  \dfrac{1}{x}  =  \dfrac{1}{2 -  \sqrt{3} }  \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  = 2 +  \sqrt{3}

Now we have to Find

 \sf \to \:   \bigg({x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}  \bigg) - 2 \times x \times  \dfrac{1}{x}

 \sf \to \:  \bigg(x +  \dfrac{1}{x}  \bigg)  ^{2}  - 2

 \sf \to \: (2 -  \sqrt{3}  + 2 +  \sqrt{3} ) {}^{2}  - 2

 \sf \to \: (4) {}^{2}    - 2

 \sf \to \: 16 - 2 = 14

Now we have to find the value of

  \sf \to \:  {x}^{2}  -  \dfrac{1}{ {x}^{2} }  =  \bigg(x -  \dfrac{1}{x}  \bigg) \bigg(x +  \dfrac{1}{x}  \bigg)

Put the value

 \sf \to \:( 2 -  \sqrt{3}  - 2 -  \sqrt{3} )(2 -  \sqrt{3}  + 2 +  \sqrt{3} )

 \sf \to \: ( - 2 \sqrt{3} )(4)

 \sf \to \:  - 8 \sqrt{3}

Answer :-

\sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \:  \: = 14 \:  \:  and \:  \: x {}^{2}  -  \dfrac{1}{ {x}^{2} }  =  - 8 \sqrt{3}

Option;- C is correct

Similar questions