Math, asked by dilipkumarpanda0106, 9 months ago

please help me out
please​

Attachments:

Answers

Answered by sethrollins13
43

Given :

  • QT and RT is bisector of ∠PQR and ∠PRS.

To Prove :

  • ∠QTR = 1/2 ∠QPR

Solution :

\longmapsto\tt{Let\:\angle{PQR}=x}

\longmapsto\tt{Let\:\angle{PRS}=y}

Now , In Δ PQR :

  • ∠PRS is exterior angle

\longmapsto\tt{\angle{PRS}=\angle{QPR}+\angle{PQR}}

\longmapsto\tt{y=\angle{P}+x}

\longmapsto\tt\bold{y-x=\angle{P}}

Now ,In Δ TQR :

  • ∠TRS is exterior angle

\longmapsto\tt{\angle{TRS}=\angle{TQR}+\angle{QTR}}

\longmapsto\tt{\dfrac{y}{2}=\dfrac{x}{2}+\angle{T}}

\longmapsto\tt{\dfrac{y}{2}-\dfrac{x}{2}=\angle{T}}

\longmapsto\tt{\dfrac{\angle{P}}{2}=\angle{T}}

\longmapsto\tt{\angle{T}=\dfrac{1}{2}\angle{P}}

\longmapsto\tt\bold{\angle{QTR}=\dfrac{1}{2}\angle{QPR}}

HENCE PROVED

Attachments:
Similar questions