Please help me out with this Q6!!
Answers
Answer:
A(1,2) and B(-2,1)
Let ratio is k : 1
By Section Formula
P(x,y)
By comparing coordinates
Put values of x and y in the given equation.
Therefore, (c) 4 : 9
HOPE THIS ANSWER WILL HELP YOU..........
Mark as brainliest............
# jasleenlehri13.........☺✌
Answer:
please mark me as brainliest
Step-by-step explanation:
3x+4y=7
A(1,2) and B(-2,1)
Let ratio is k : 1
\begin{lgathered}x1 = 1 \\ x2 = - 2 \\ y1 = 2 \\ y2 = 1 \\ m = k \\ n = 1\end{lgathered}
x1=1
x2=−2
y1=2
y2=1
m=k
n=1
By Section Formula
P(x,y)
\begin{lgathered}=( \frac{mx2 + nx1}{m + n} \: \frac{my2 + ny1}{m + n} ) \\ \\ = ( \frac{k( - 2) + 1(1)}{k + 1} \: \frac{k(1) + 1(2)}{k + 1} ) \\ \\ = ( \frac{ - 2k + 1}{k + 1} \: \frac{k + 2}{k + 1})\end{lgathered}
=(
m+n
mx2+nx1
m+n
my2+ny1
)
=(
k+1
k(−2)+1(1)
k+1
k(1)+1(2)
)
=(
k+1
−2k+1
k+1
k+2
)
By comparing coordinates
\begin{lgathered}x = \frac{ - 2k + 1}{k + 1} \\ \\ y = \frac{k + 2}{k + 1}\end{lgathered}
x=
k+1
−2k+1
y=
k+1
k+2
Put values of x and y in the given equation.
\begin{lgathered}3x + 4y = 7 \\ 3( \frac{ - 2k + 1}{k + 1} ) + 4( \frac{k + 2}{k + 1} ) = 7 \\ \\ \frac{ - 6k + 3}{k + 1} + \frac{4k + 8}{k + 1} = 7 \\ \\ \frac{ - 6k + 3 + 4k + 8}{k + 1} = 7 \\ \\ 11 - 2k = 7k + 7 \\ 4 = 9k \\ \frac{k}{1} = \frac{4}{9}\end{lgathered}
3x+4y=7
3(
k+1
−2k+1
)+4(
k+1
k+2
)=7
k+1
−6k+3
+
k+1
4k+8
=7
k+1
−6k+3+4k+8
=7
11−2k=7k+7
4=9k
1
k
=
9
4
Therefore, (c) 4 : 9