Math, asked by vinnumber, 2 months ago

please help me

please help me​

Attachments:

Answers

Answered by BrainlyPopularman
22

GIVEN :

A matrix   \to\bf \: A =  \left[ \begin{array}{cc} \: 1&2 \\ 4&3 \end{array}\right]

• Ax = I

TO FIND :

• x = ?

SOLUTION :

  \\  \implies\bf \: Ax =  I\\

• Now put the values –

  \\  \implies\bf \: \left[ \begin{array}{cc} \: 1&2 \\ 4&3 \end{array}\right]x =  \left[ \begin{array}{cc} \: 1&0\\ 0&1 \end{array}\right]\\

• Now let's apply operations –

  \\  \longrightarrow \:  \:  \bf \: R_2 = R_2 - 4R_1\\

  \\  \implies\bf \: \left[ \begin{array}{cc} \: 1&2 \\ 0& - 5 \end{array}\right]x =  \left[ \begin{array}{cc} \: 1&0\\  - 4&1 \end{array}\right]\\

  \\  \longrightarrow \:  \:  \bf \: R_2 =  \dfrac{R_2}{ - 5}\\

  \\  \implies\bf \: \left[ \begin{array}{cc} \: 1&2 \\ 0& 1 \end{array}\right]x =  \left[ \begin{array}{cc} \: 1&0\\  \dfrac{4}{5}& - \dfrac{1}{5} \end{array}\right]\\

  \\  \longrightarrow \:  \:  \bf \: R_1 = R_1 - 2R_2\\

  \\  \implies\bf \: \left[ \begin{array}{cc} \: 1&0 \\ 0& 1 \end{array}\right]x =  \left[ \begin{array}{cc} \:  - \dfrac{3}{5}&\dfrac{2}{5}\\ \\ \dfrac{4}{5}& - \dfrac{1}{5} \end{array}\right]\\

  \\  \implies\bf \: Ix =  \left[ \begin{array}{cc} \:  - \dfrac{3}{5}&\dfrac{2}{5}\\ \\ \dfrac{4}{5}& - \dfrac{1}{5} \end{array}\right]\\

  \\  \implies\bf \: x =  \left[ \begin{array}{cc} \:  - \dfrac{3}{5}&\dfrac{2}{5}\\ \\ \dfrac{4}{5}& - \dfrac{1}{5} \end{array}\right]\\

  \\  \implies\bf \: x =  \dfrac{1}{5}  \left[ \begin{array}{cc} \:  - 3&2\\ \\ 4& - 1 \end{array}\right]\\

Hence , Option (c) is correct.

Similar questions