Math, asked by Momlovesyou, 2 months ago

please help me please yaar please ​

Attachments:

Answers

Answered by user0888
39

Required answer: 56 and 27 respectively.

Solution

Since the value is a^3+b^3+c^3-3abc, it can be factorized into (a+b+c)(a^2+b^2+c^2-ab-bc-ca).

We find either a+b+c or a^2+b^2+c^2 or ab+bc+ca to find its value.

(I) a+b+c=14,\ a^2+b^2+c^2=68

\implies (a+b+c)^2-(a^2+b^2+c^2)=14^2-68

\implies 2ab+2bc+2ca=128

\implies ab+bc+ca=64

The value to be found:-

(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

=14\times (68-64)

=14\times 4=\boxed{56}

(II) a+b+c=9,\ ab+bc+ca=26

\implies (a+b+c)^2-2(ab+bc+ca)=81-52

\implies a^2+b^2+c^2=29

The value to be found:-

(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

=9\times (29-26)

=9\times 3=\boxed{27}


amansharma264: Awesome
Similar questions