Math, asked by 00252618690281, 10 months ago

please help me!!

show work
step-by-step

ABC is a triangle with AB = AC. D is the Mid-point of BC .
prove that angle ADB is a right angle

Answers

Answered by Anonymous
14

 \textbf{ \underline{ \underline{Solution :  \:  \: } \: }} \\  \\ </p><p> \textsf{ \underline{    Given : }} \\  \\  \star \:  \text{ \small{ABC \: is \: a \: triangle}} \\ \star \:  \text{ \small{AB = AC }}  \\ \star \:  \text{ \small{D  is the  mid  point  of  BC }} \\  \\ </p><p></p><p> \textsf{ \underline{  To Prove :   }} \\  \\  \star \:  \text{ \small{$ \angle$ ADB \: is \: a \: right \: angle }}  \\  \\ </p><p>\boxed{ \textsf{(Refer the attachment for figure) }}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \: \text {\underline{ \:  BC is a straight line \: }} \\  \implies\text{\small{$\angle$ADB + $\angle$ADC = 180$\degree$}} \:  \:  \:  \bigg( \text{Angles on the line BC}\bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{AB = AC}  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:   \bigg( \text{Given}\bigg) \\  \implies \: \text{\small{$\angle$ADB  =  $\angle$ADC}} \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \bigg( \textbf{Theorem : } \text{Opposite  angle  of  two  equal  lines  are  also  equal}\bigg) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \textbf{\small{$\angle$ADB + $\angle$ADC = 180$\degree$}} \\  \implies \:  \text{ \small{$\angle$ADB +$\angle$ADB  =  180$\degree$  }} \\ \implies \:  \text{ \small{2$\angle$ADB  =  180$\degree$  }}  \\ \implies \:  \text{ \small{$\angle$ADB}}  =  \frac{180\degree }{2}  \\ \implies \:  \text{ \small{$\angle$ADB}}  =   90\degree \\  \\  \boxed{ \boxed{ \textsf{Hence, $\angle$ADB  is a Right angle }}}

Attachments:
Similar questions