please help me solve this
Answers
Answer:
–√+43–√ ( if so , then already answer is given)
So,
x=(√7+43–√)
Now
7+4(√3)=22+2∗2∗3–√+(3–√)2
=(2+3–√)2
Hence 7+43–√−−−−−−−√ = 2 +3–√
So x=2+(√3)
1/x=1(2+3–√)
=2−3–√22−3–√2 [ multiplying numerator and denominator by 2+(√3) ]
=2−3–√4–3
=2+3–√
So 1/x=2−3–√
So x+1x=(2+3–√)+(2−3–√)=4
If x=7+4√3, then what will be the value of √x+1/√x?
If x=7-4√3, what does x+1/x equal?
If x=3-2√2, then what is the value of (√x) - (1/√x)?
If x=√7+4√3, what is the value of x+1/x=?
What is the value of x+1/x if x=7-4√3?
Given :
x=7–√+43–√
⟹1x=17–√+43–√
⟹1x=1(7–√+43–√)(7–√−43–√)(7–√−43–√)
(a+b)(a−b)=a2−b2
Therefore,
⟹1x=7–√−43–√(7–√)2−(43–√)2
⟹1x=7–√−43–√−41
⟹x+1x=7–√+43–√−7–√−43–√41
⟹x+1x=417–√+1643–√−7–√+43–√41
[math]\implies x + \dfrac{1}{x} = 8\dfrac{5\sqrt{7} + 21\sqrt{[/math]
Continue Reading
Rule the new normal!
x=7+43–√−−−−−−−√x=(2)2+2(3–√)(2)+(3–√)2−−−−−−−−−−−−−−−−−−−√x=(2+3–√)2−−−−−−−−√x=2+3–√(x+1x)=2+3–√+12+3–√⋅2−3–√2−3–√(x+1x)=2+3–√+2−3–√4−3(x+1x)=4
x = √7 + 4√3
1/x = 1/(√7 + 4√3)
1/x = (√7 - 4√3) / (√7 + 4√3) (√7 - 4√3)
1/x = (√7 - 4√3)/ ((√7)^2 - (4√3)^2)
1/x = (√7 - 4√3) / (7 -48)
1/x = -((√7 - 4√3)/41)
x + 1/x = (√7 + 4√3) + (-(√7 - 4√3)/41)
= (√7 + 4√3) - (√7 - 4√3)/41
= (41(√7 + 4√3) - (√7 - 4√3))/41
= {41√7 - √7 + 164√3 + 4√3}/41
= (40√7 + 168√3)/41
If a=√ (7+4√3), what will be the value of a+1÷a?
If x=3+2√2, then what is the value of √x-1/√x?
If ‘x=3-2√2’, can you find the value of ‘√x+1/√x’?
If x=√7+4√3, what is the value of x+1÷x?
If x=3+2√3, then what is the value of √x+1/√x?
Given x =√7+4√3
1/x = 1/(√7+4√3) = (4√3-√7)/(√7+4√3) (4√3-√7) , multiplying numerator and denominator by (4√3-√7)
1/x = (4√3-√7)/41
x+1/x = (√7+4√3) + (4√3-√7)/41
On simplification (56+8√21)/(√7+4√3).
Based on the problem given this should be the answer.
However the first part of x generally given as an integer, and the answer is simple.
Like if 7 is given in place of √7 then the answer would be 14.
The Gone Game - Voot Select's latest original thriller series.
Given, x = (√7 + 4√3)
Now, (√7 + 4√3)*(√7 - 4√3) = 7 - 48 = - 41.
So, x*(√7 - 4√3) = - 41
So, 1 / x = {(√7 - 4√3) / (- 41)}
Therefore, x + 1 / x = (√7 + 4√3) - {(√7 - 4√3) / 41} = {40*(√7) + 42*(4√3)} / 41
question :
solution: (x+1/x) (x+1/x) can also be written as
(x+1/x) (x+1/x) = 1+(1/x) (1/x)
root(7) root(7) = 2.6457513110645907
root(3 root(3 )= 1.7320508075688772
x= 2.6457513110645907 + (4 x 1.7320508075688772)
x= 9.57395454134
now 1/x 1/x = 0.10445004681
(x+1/x) (x+1/x) = 0.10445004681 + 1
therefore (x+1/x) (x+1/x) =1.10445004681
x+1/x can be written as 1+1/x
Now as x=√7+4√3
1/x=1/√7+4√3
on multipling and dividing with
4√3-√7 we get 4√3-√7/(4√3)^2-(√7)^2
=4√3-√7/48–7
4√3-√7/41=1/x
1+1/x=1+4√3-√7/41
I think the answer may not match as in question it should be 7+4√3=x which will give answer as 8–4√3
x= sqrt 7+4sqrt 3 ….,,… (1)
So 1/x=1/{sqrt 7+4sqrt 3}
Or 1/x={sqrt 7–4sqrt 3}/{sqrt 7+4sqrt 3}{sqrt 7–4sqrt 3}
Or 1/x={sqrt 7–4sqrt 3}/{ 7–16* 3}
Or 1/x={sqrt 7–4sqrt 3}/-41
Or 1/x=(4/41)sqrt 3-(1/41) sqrt7 ……(2)
So x+1/x =(4+4/41)sqrt 3 +(1–1/41)sqrt 7
Or x+1/x=(168/41)sqrt 4+(40/41)sqrt 7
If x=√(7+4√3)=(2+√3)
Then 1/x= (2-√3)
Therefore (x+1/x)=4
Given , x=√7+4√3
Now, 1/x= 1/(√7+4√3)
After rationalisation,we get,
1/x=1/(√7+4√3) *(√7–4√3)/(√7–4√3)
1/x= (√7–4√3)/(-41) = (4√3-√7 )/41
Now,
x+1/x= (√7+4√3) +((4√3-√7)/41)
x+1/x= (40√7+168√3)/41….ANS..
A2A!
x = 7 + 4√3
So, 1/x = 7 - 4√3
x + 1/x = 7 + 4√3 + 7 - 4√3 = 14
Hope that helps! !
——AA
x=7^1/2+4.3^1/2………………….(1)
1 /x= 1/( 7^1/2+4.3^1/2) , multiply above and below by (7^1/2 -4.3^1/2).
1/x= (7^1/2 - 4.3^1/2)/(-41)
1/x= -(7^1/2)/41 +(4.3^1/2)/41…………(2)
By adding eq.(1)& eq.(2)
x+1/x= (7^1/2).40/41 +(4.3^1/2).42/41 , answer
Consider, a = 7 – 4√3
= 7 – 2×2×√3
= 4 + 3 – 2×2× √3
= 2
2
+ (√3)
2
– 2×2× √3
a = (2 – √3)
2
∴ √a = 2 – √3
Hence [(√a)+ (1/√a)] = 2 – √3 +2 + √3
= 4
As, x=√7+4√3
So,
X+1/x=
(√7+4√3)+1/ (√7+4√3)
= (√7+4√3)+1/ (√7+4√3)* (√7+4√3)/ (√7+4√3)
=[(-40)/√7+4√3]
Rt(7+4rt3) =rt (7+2rt12)=rt(4+3 +2rt4*3)
(2+rt3)^2
x =(2+rt3)
x +1/x =2+rt3 +1/(2+rt3)
2+rt3+(2-rt3)/(2+rt3)(2-rt3)
2+rt3+(2-rt3)/4–3
= 2+rt3+2-rt3= 4
X=√7+4√3
1/X=√7–4√3. ( By rationalisation)
√7+4√3+√7–4√3
2√7
After rationalising 1/x gets converted into. (4√3-√7)/41
Thus √7+4√3+(4√3-√7)/41 = (40√7+168√3)/41
55+8 root21
_____________
root7+4root3
Simply write reciprocal of x and rationalise and add,you will get the answer.
[x+1 ÷ x]= (x÷x) + (1÷x) = 1 ÷ (√7+4√3)= 1÷ 9.57 = 0.104
Rationalise 1/X and then add
Answer should be 2√7