Math, asked by shraddha4567, 9 months ago

Please help me solve this question on trigonometry ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

Let A= α,

Then,

x =  \cot( \alpha )  +  \cos( \alpha )  \:  \: and \:  \: y =  \cot( \alpha )   - \cos( \alpha )

Now,

 { (\frac{x - y}{x + y}) }^{2}  +  { (\frac{x - y}{2} )}^{2}

 =  (\frac{ \cot( \alpha )  + \cos( \alpha )   - \cot( \alpha ) +    \cos( \alpha ) }{ \cot( \alpha ) +  \cos( \alpha )   + \cot( \alpha )   -   \cos( \alpha )  } )^{2}  +  { (\frac{ \cot( \alpha ) +  \cos( \alpha )   - \cot( \alpha ) +   \cos( \alpha )  }{2} })^{2}

 =  ({ \frac{2 \cos( \alpha ) }{2 \cot( \alpha )  } })^{2}  +  ({ \frac{2 \cos( \alpha ) }{2} })^{2}

 =  \frac{ \cos^{2} ( \alpha ) }{ \cot ^{2} ( \alpha ) } +  \cos^{2} ( \alpha )

 =  \sin^{2} ( \alpha )   + \cos^{2} ( \alpha )

 = 1

Hence proved

Similar questions