Math, asked by emilianapasco, 2 months ago

please help me. The GCF and LCM of two numbers are 9and90 respectively if one of the numbers is 18 find the other number.​

Answers

Answered by Anonymous
61

Answer:

Given :-

  • The GCF and LCM of two numbers are 9 and 90 respectively.
  • One of the numbers is 18.

To Find :-

  • What is the other number.

Solution :-

Let, the other number be x

Given :

  • GCF = 9
  • LCM = 90
  • One number = 18

As we know that :

One number × Other number = GCF × LCM

According to the question by using the formula we get,

18 × x = 9 × 90

18x = 810

x = 810/18

x = 45

The other number is 45 .

_______________________

VERIFICATION :

One number × Other number = GCF × LCM

18 × x = 9 × 90

18x = 810

By putting x = 45 we get,

18(45) = 810

18 × 45 = 810

810 = 810

Hence, Verified .

Answered by Evilhalt
519

  \clubs \:  \:  \:  { \large{ \color{navy}{ \underline{ \sf{Question}}}}}

  • The GCF and LCM of two numbers are 9and90 respectively if one of the numbers is 18 find the other number.

  \clubs \:  \:  \:  { \large{ \color{navy}{ \underline{ \sf{Solution}}}}}

 \blacktriangleright \:  \:  \sf{ \large{ \underline{ \underline{ \color{red}{Given : }}}}}

  • GCF and LCM of two numbers 9 and 90 respectively.
  • and one number is 18.

 \blacktriangleright \:  \:  \sf{ \large{ \underline{ \underline{ \color{red}{ To Find: }}}}}

  • The Other Number .

 \longmapsto{ \underline { \boxed{ \color{green}{ \sf{Let  \: the \:  other \:  Number  \: be  \: x}}}}}

  • Here we use the formula :

 \sf{ \underbrace{ \color{purple}{one \: number \times other \: number \:  = GCF \times  LCM}}}

Here :-

  • GCF → 9
  • LCM → 90
  • one number → 18

By Substituting the values in the above formula.

We get,

 \longmapsto \sf{ \color{red}{18 \times x = 9 \times 90}}

 \longmapsto \sf{ \color{red}{18 \: x = 810}}

 \longmapsto \sf{ \color{red}{x \:  =  \:  \frac{180}{18} }}

 \longmapsto \sf{ \color{red}{x \:  =  \: \cancel  \frac{180}{18} \:  = 45 }}

 \longmapsto { \underline{ \boxed{\sf{ \color{darkblue}{x = 45}}}}}

 \qquad \therefore \:  \sf{ \underline{ \underline {The  \: other \:  number  \: is  \: 45}}}

 \blacktriangleright \:  \:  \sf{ \large{ \underline{ \underline{ \color{red}{Verification : }}}}}

  • By putting the values in the above Equation

 \sf{ \underbrace{ \color{purple}{one \: number \times other \: number \:  = GCF \times  LCM}}}

 \longmapsto \sf{18 \times x = 9 \times 90}

 \longmapsto \sf{18 \: x = 810}

  • Now the Other Number  \sf{ \underline{x = 45}}So we get ,

 \longmapsto \sf{18 \: (45)= 810}

 \longmapsto \sf{810= 810}

  • Hence LHS = RHS

 \qquad  \spades \:  \: \sf{hence \: verified}

Similar questions