Math, asked by ItzFadedGuy, 2 months ago

Please help me!
The ratio of sum of n terms of two A.P's is (7n + 1):(4n+27). Find the ratio of their m^{th} term.
(Spam = Report \checkmark)

Answers

Answered by kailashmannem
144

 \huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

  • If the ratio of the sum of the first n terms of two AP is (7n + 1) : (4n + 27), then find the ratio of their 9th terms.

 \huge {\bf{\orange{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

This is a very good question, just don't get complicated or confused.

Ratio of sum of 1st n terms of 2 A.P is (7n + 1) : (4n + 27).

Ratio of mth term?

 \sf Let \: the\: 1st \:terms \:of \:2\: A.P's\: be\: a_{1} \: and \: a'_{1}.

 \sf Let \: the\: common\: differences\: \:2\: A.P's\: be\: d \: and \: d'.

 \sf Let \: the\: sums \:of \:2\: A.P's\: be\: S_{1} \: and \: S'_{1}.

 \sf Let \: the\: 2 \: A.P's\: be\: T_{1} \: and \: T'_{1}.

According to the question,

  •  \boxed{\pink{\sf \dfrac{T_{1}}{T'_{1}} \: = \: \dfrac{7n \: + \: 1}{4n \: + \: 27} \: = \: \dfrac{\dfrac{n}{2} (2a \: + \: (n \: - \: 1) \: d}{\dfrac{n}{2} (2a' \: + \: (n \: - \: 1) \: d'}}}

  •  \sf \dfrac{7n \: + \: 1}{4n \: + \: 27} \: = \: \dfrac{\cancel{\dfrac{n}{2}} (2a \: + \: (n \: - \: 1) \: d}{\cancel{\dfrac{n}{2}} (2a' \: + \: (n \: - \: 1) \: d'}

  •  \sf \dfrac{7n \: + \: 1}{4n \: + \: 27} \: = \: \dfrac{2a \: + \: (n \: - \: 1) \: d}{2a' \: + \: (n \: - \: 1) \: d'}

Now, we must Substituting (2m - 1) in place of n,

Substituting,

  •  \sf \dfrac{7(2m \: - \: 1) \: + \: 1}{4(2m \: - \: 1) \: + \: 27} \: = \: \dfrac{2a \: + \: ((2m\: - \: 1) \: - \: 1) \: d}{2a' \: + \: ((2m \: - \: 1) \: - \: 1) \: d'}

  •  \sf \dfrac{7(2m \: - \: 1) \: + \: 1}{4(2m \: - \: 1) \: + \: 27} \: = \: \dfrac{2a \: + \: (2m \: - \: 2) \: d}{2a' \: + \: (2m \: - \: 2) \: d'}

  •  \sf \dfrac{14m \: - \: 7 \: + \: 1}{8m \: - \: 4 \: + \: 27} \: = \: \dfrac{2a \: + \: (2m \: - \: 2) \: d}{2a' \: + \: (2m \: - \: 2) \: d'}

  •  \sf \dfrac{14m \: - \: 6}{8m \: + \: 23} \: = \: \dfrac{2a \: + \: (2m \: - \: 2) \: d}{2a' \: + \: (2m \: - \: 2) \: d'}

Taking 2 common on left side,

  •  \sf \dfrac{14m \: - \: 6}{8m \: + \: 23} \: = \: \dfrac{2(a \: + \: (m \: - \: 1) \: d)}{2(a' \: + \: (m \: - \: 1) \: d')}

  •  \sf \dfrac{14m \: - \: 6}{8m \: + \: 23} \: = \: \dfrac{\cancel{2}(a \: + \: (m \: - \: 1) \: d)}{\cancel{2}(a' \: + \: (m \: - \: 1) \: d')}

  •  \sf \dfrac{14m \: - \: 6}{8m \: + \: 23} \: = \: \dfrac{a \: + \: (m \: - \: 1) \: d}{a' \: + \: (m \: - \: 1) \: d'}

  •  \sf \dfrac{14m \: - \: 6}{8m \: + \: 23} \: = \: \dfrac{a_m}{a'_m}

  •  \boxed{\sf a_m : a'_m \: = \: 14m \: - \: 6 : 8m \: + \: 23}

Therefore,

  • Ratio of mth term is 14m - 6 : 8m + 23.

 \huge{\bf{\purple{\mathfrak{\dag{\underline{\underline{Note:-}}}}}}}

Why should we substitute (2m - 1)?

  • We should substitute (2m - 1) so as to take 2 common from the RHS and get the mth term i.e  \sf a_m and get the ratio.
Answered by Anonymous
48

Required Answer :-

According to the question

\sf \dfrac{Sn}{Sn'} =\dfrac{ \dfrac{n}{2}\bigg(2a + [n-1] d\bigg)}{\dfrac{n}{2}\bigg(2a'+[n-1]d'\bigg)}

\sf\dfrac{Sn}{Sn'} = \dfrac{\bigg(2a\bigg)[n-1]d}{\bigg(2a'\bigg)+[n-1]d'}

\sf\dfrac{Sn}{Sn'} = \dfrac{2a+[n-1]d}{2a'+[n-1]d'}

\sf \dfrac{2a+ [n - 1]d}{2a' + [n - 1]d'}=\dfrac{7n + 1}{4n+27}

\sf Exchanging\; n =\; 2m-1

\sf \dfrac{7(2m-1)+1}{4(2m-1)+27}

\sf \dfrac{14m-7+1}{8m - 4 + 27}

\sf\dfrac{14m-6}{8m+23}

Similar questions