Math, asked by RITESHMOHAMMAD, 4 months ago

please help me this question ​

Attachments:

Answers

Answered by MrImpeccable
23

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Evaluate:

  •  \dfrac{5\cos^260^{\circ} + 4\sec^230^{\circ} - \tan^245^{\circ}}{\sin^245^{\circ} + \cos^245^{\circ}} \\

Solution:

 \dfrac{5\cos^260^{\circ} + 4\sec^230^{\circ} - \tan^245^{\circ}}{\sin^245^{\circ} + \cos^245^{\circ}} \\\\\text{Substituting the values of the given trigonometric ratios, we get,} \\\\

 \implies \dfrac{5\left(\dfrac{1}{2}\right)^2 + 4\left(\dfrac{2}{\sqrt{3}}\right)^2 - (1)^2}{\left(\dfrac{1}{\sqrt{2}}\right)^2 + \left(\dfrac{1}{\sqrt{2}}\right)^2} \\\\

 \implies \dfrac{5*\dfrac{1}{4} + 4*\dfrac{4}{3} - 1}{\dfrac{1}{2} + \dfrac{1}{2}} \\\\

 \implies \dfrac{\dfrac{5}{4} + \dfrac{16}{3} - 1}{1} \\\\\implies \dfrac{(5*3) + (4*16) - (12*1)}{12} \:\:\:\:\:Take\:LCM\\\\\implies \dfrac{15 + 64 - 12}{12} \\\\\bf{\implies \dfrac{67}{12}}

Learn More:

 \large{\sf Trigonometric Ratios-:} \\ \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Hope it helps!!!

Answered by ltzSweetAngel
8

Answer:

From the question it is given that,

EF = 7.2 cm

∠E = 110o

∠F = 80o

Now we have to check whether it is possible to construct ΔDEF from the given values.

We know that the sum of the angles of a triangle is 180o.

Then,

∠D + ∠E + ∠F = 180o

∠D + 110o+ 80o= 180o

∠D + 190o = 180o

∠D = 180o– 1900

∠D = -10o

We may observe that the sum of two angles is 190o is greater than 180o. So, it is not possible to construct a triangle.

Similar questions