Math, asked by sowon, 10 months ago

Please help me to do this ​

Attachments:

Answers

Answered by abhi569
16

Answer:

2

Step-by-step explanation:

 We know, cos( 90 - A ) = sinA ;

                   sec( 90 - A ) = cosecA ;

               sin^2 A + cos^2 A = 1

Here,

⇒ cos²43° + cos²47° + ( sec50°/cosec40° )

       cos²43° = cos( 90° - 47° )

       sec50° = sec( 90° - 40° )

⇒ cos²( 90 - 47 ) + cos²47° + ( sec(90-40)/cosec40 )

⇒ sin²47° + cos²47° + ( cosec40°/cosec40° )

⇒ 1 + 1

⇒ 2

Answered by kailashmeena123rm
36

 \red{ \sf{Answer}}

 \boxed{ \blue{2}} \\

</p><p> \red{ \sf{Explanation}}</p><p>

Some important results

  • cos(90-x) = sinx
  • sec(90-x) = cosec x

the functions changes at 90•

 \\  \\

since

cos (43) = sin(90-43) = sin(47)

sec(50)=cosec(90-50) =cosec(40)

 \\  \\

 \rightarrow \:  {( \cos43)}^{2}  + {( \cos47)}^{2}    +  \frac{{(  \sec50)}^{2}  }{ { (\csc40) }^{2} }

 \rightarrow \:  {( \cos43)}^{2}  + {(  \sin(90 - 47) )}^{2}    +  \frac{{(  \sec(90 - 50))}^{2}  }{ { (\csc40) }^{2} }

....... from 1 and 2

 \\

 \rightarrow \:  {( \cos43)}^{2}  + {(  \sin(43) )}^{2}    +  \frac{{(   \csc(40) )}^{2}  }{ { (\csc40) }^{2} }

we know

sin^2 x + cos^x = 1

 \rightarrow 1 + 1

 \rightarrow  \boxed{ \blue{2}} \\

Similar questions