Math, asked by kabidiptimayee123, 2 months ago

Please help me to do this no spamming ​

Attachments:

Answers

Answered by mehulkumarvvrs
0

Solution :-

  \frac{7 + 3 \sqrt{5}}{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5}  }{3 -  \sqrt{5} }

 =  \frac{(7 + 3 \sqrt{5} )(3 -  \sqrt{5} ) - (7 - 3 \sqrt{5} )(3 -  \sqrt{5} )}{(3 +  \sqrt{5})(3 -  \sqrt{5} )}

 =\frac{( 21 - 7 \sqrt{5} + 9 \sqrt{5}  - 15) - (21 - 9 \sqrt{5}  + 7 \sqrt{5}  - 15) }{ {3}^{2} -  (\sqrt{5} ) ^{2}  }

 =   \frac{ - 14 \sqrt{5}  + 18 \sqrt{5} }{9 - 5}

 =  \frac{4 \sqrt{5} }{4}

 =  \sqrt{5}

Theory used here :-

(a + b)(a - b) = a² - b²

To sum two numbers in the form of p/q, we first take the lcm of denominator and then multiply and add each term in the numerator accordingly.

Hope u liked my answer

Pls mark me as brainliest

Thanks.

Similar questions