please help me to do this question
Answers
Answer:
Answer: (b) 5/4
Step-by-step explanation:
Check the images for explanation
Question : -
If one zero of the quadratic polynomial, (k-1)x²+Kx+1 is -4 then the value of k is
- (a) (-5)/(4)
- (b) (5)/(4)
- (c) (-4)/(3)
- (d) (4)/(3)
ANSWER
Given : -
One zero of the quadratic polynomial, (k-1)x²+kx+1 is -4
Required to find : -
- value of k ?
Formula used : -
Quadratic formula !
Let consider a polynomial p(x) = ax²+bx+c for which the zeroes are x,y then
- x = (-b+√[b²-4ac])/(2a)
- y = (-b-√[b²-4ac])/(2a)
Solution : -
One zero of the quadratic polynomial, (k-1)x²+kx+1 is -4
So,
(k-1)x²+kx+1 = 0
The standard form of a polynomial is ax²+bx+c = 0
Comparing both the polynomials !
(k-1)x²+kx+1 = 0 ax²+bx+c = 0
Here,
a = (k-1)
b = k
c = 1
Since, one of the zero of the polynomial is -4
so,
- x = -4
Using the formula;
x = (-b+√[b²-4ac])/(2a)
-4 = (-[k]+√[(k)²-4(k-1)(1)])/(2[k-1])
-4 = (-k+√[k²-4k+4])/(2k-2)
By cross multiplication
-4(2k-2) = (-k+√[k²-4k+4])
-8k+8 = -k+√[k²-4k+4]
-8k+8+k = √(k²-4k+4)
8-7k = √([k]²-2[k][2]+[2]²)
8-7k = √([k-2]²)
8-7k = k-2
-7k-k = -2-8
-8k = -10
-(8k) = -(10)
8k = 10
k = (10)/(8)
k = (5)/(4)
Therefore,
- value of k = (5)/(4)