please help me to do this question
Attachments:
Answers
Answered by
2
Answer:
pls mark me as a brainlist
Step-by-step explanation:
Prove sin3A= 3sinA - 4sin3A
We have to prove sin3A = 3sinA – 4sin3A
Proof
sin 3A can be expressed assin (2A + A)
sin(2A + A)
= sin2A. cosA + cos2A. sinA
= 2sinA.cosA.cosA + (cos2A – sin2A) sinA
= 2sinA.cosA.cosA + (1 – 2 sin2A) sinA
sin2A = 2sinA. cosA
cos2A = cos2A – sin2A = 1 – 2sin2A = 2cos2A – 1
= 2sinA. cos2A + sinA – 2sin3A
= 2sinA(1- sin2A) + sinA – 2sin3 A
= 2 sinA – 2 sin3A + sinA – 2sin3A
= 3sin – 4sin3A
= RHS
Hence Proved
Similar questions