Math, asked by babli8209, 7 months ago

please help me to everyone and solve it question class 9th ​

Attachments:

Answers

Answered by prince5132
12

GIVEN :-

  • x = 3 + 2√2.

TO FIND :-

  • The value of (x - 1/x)³

SOLUTION :-

 \\ : \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  \bigg(3 + 2 \sqrt{2}  -  \frac{1}{3 + 2 \sqrt{2} }  \bigg) ^{3}  \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  \bigg(3 + 2 \sqrt{2}  -  \frac{1(3 - 2 \sqrt{2} )}{(3 + 2 \sqrt{2} )(3 - 2 \sqrt{2} )}  \bigg) ^{3}  \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  \bigg(3 + 2 \sqrt{2}  -  \frac{3 - 2 \sqrt{2} }{(3) ^{2} - (2 \sqrt{2} )^{2}  }  \bigg)  ^{3} \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  \bigg(3 + 2 \sqrt{2}  -  \frac{3 - 2 \sqrt{2} }{9 - 4 \times 2}  \bigg) ^{3}  \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  \bigg(3 + 2 \sqrt{2}  -  \frac{3 - 2 \sqrt{2} }{1}  \bigg) ^{3}  \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =   \bigg(3 + 2 \sqrt{2}  -  3  + 2 \sqrt{2 }  \bigg) ^{3}  \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  \bigg(4\sqrt{2}\bigg) ^{3}  \\  \\  \\

: \implies \displaystyle \sf \:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =  64\sqrt{8} \\  \\  \\

: \implies  \underline{ \boxed{\displaystyle \sf  \bold{\:  \bigg(x -  \frac{1}{x}  \bigg)^{3}  =128\sqrt{2} }}}

Answered by Anonymous
14

  \sf \underline{Given } :

  • → x = 3 + 2√2 .

  \sf \underline{To \:  Find } :

  • ( x - 1/x )³

  \sf \underline{ Solution \: } :

 \sf  : \implies \: then \:  \:  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\   \\ \\  \sf  : \implies \: \: \frac{1}{3 + 2 \sqrt{2} }  \:  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \\ \sf  : \implies \: \: \cancel{ \frac{3 + 2 \sqrt{2} \: }{ {3}^{2} +  {2 \sqrt{2} }^{2}  }  }\\  \\  \\ \sf \implies \: \: \: 3 +  2 \sqrt{2}

 \underline\boldsymbol{According \: to \: the \: question \: }

 \therefore  \sf \:  {\frac{x - 1}{x}}^{3}  \:  \\  \\

Substitute all values :

 \sf \implies \:  {(3 + 2 \sqrt{2}  - 3 + 2 \sqrt{2} })^{3}  \\  \\  \\ \sf \implies \:  \:  {(4 \sqrt{2} })^{3}  \\  \\  \:  \\  \sf \implies \:  \:128 \sqrt{2}

Similar questions