Math, asked by srilalithl3525, 3 months ago

Please help me to find this questions answer x/2> -1 + 3x/4 ; x element N

Answers

Answered by ItzImperceptible
2

GiVeN : -

x = 3 + 2√2

To FiNd : -

\sqrt{x} + \frac{1}{ \sqrt{x} }

x

+

x

1

SoLuTiOn : -

Here,

x = 3 + 2√2. ,

Then,

\begin{gathered} \implies \frac{1}{x} = \frac{1}{3 + 2 \sqrt{2} } \\ \\ \implies \: \frac{1}{x} = \frac{1}{3 + 2 \sqrt{2} } \times \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } \\ \\ \implies \: \frac{1}{x} = \frac{3 - 2 \sqrt{2} }{ {(3)}^{2} - {(2 \sqrt{2)} }^{2} } \\ \\ \implies \: \frac{1}{x} = \frac{3 - 2 \sqrt{2} }{9 - 8} = 3 - 2 \sqrt{2} \end{gathered}

x

1

=

3+2

2

1

x

1

=

3+2

2

1

×

3−2

2

3−2

2

x

1

=

(3)

2

−(2

2)

2

3−2

2

x

1

=

9−8

3−2

2

=3−2

2

Now,

We have

=> x = 3 + 2√2 and 1/x = 3 - 2√2

Now,

We know that,

\implies \: {( \sqrt{x} + \frac{1}{ \sqrt{x} } ) }^{2} = x + \frac{1}{x} + 2⟹(

x

+

x

1

)

2

=x+

x

1

+2

So,

Put the above values in the above identity

We get,

\begin{gathered} \implies \: {( \sqrt{x} + \frac{1}{ \sqrt{x} } ) }^{2} = 3 + 2 \sqrt{2} + 3 - 2 \sqrt{2} + 2 \\ \\ \implies \: {( \sqrt{x} + \frac{1}{ \sqrt{x} } )}^{2} =8 \\ \\ \implies \: \sqrt{x} + \frac{1}{ \sqrt{x} } = \sqrt{8} = 2 \sqrt{2} \end{gathered}

⟹(

x

+

x

1

)

2

=3+2

2

+3−2

2

+2

⟹(

x

+

x

1

)

2

=8

x

+

x

1

=

8

=2

2

So, we get,

=> √x + 1/√x = 2√2

Similar questions