Please help Me to solve my query
Attachments:
Answers
Answered by
1
Step-by-step explanation:
- (a^x+1 /a^y+1)^x+y * (a^y+2/a^z+2)^y+z * (a^z+3/a^x+3 ) ^z+x = 1
- {a^(x+1)-(y+1)}^x+y *{a^(y+2)-(z+2)}^y+z *{a^(z+3)-(x+3)}^z+x =1
- {a^(x+1-y-1) }^x+y *{a^(y+2-z-2)}^y+z *{a^(z+3-x-3)}^z+x = 1
- a^(x-y)(x+y)*a^(y-z)(y+z)*a^(z-x)(z+x)=1
- a^(x^2-y^2 )*a^(y^2-z^2) *a^(z^2-x^2)= 1
- a^(x^2-y^2)+(y^2-z^2)+(z^2-x^2 ) = 1
- a^(x^2-y^2+y^2-z^2+z^2-x^2) = 1
- a^0 = 1
- 1 = 1
- Hence, proved.
Answered by
2
hi mare XxMissHeartHackerxX I'd ban ho Gaye
Similar questions
Math,
1 month ago
English,
1 month ago
Computer Science,
1 month ago
Political Science,
3 months ago
Social Sciences,
10 months ago
Math,
10 months ago